首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 56 毫秒
1.
The in situ reflectance spectra in the 400–2500 nm wavelength region were obtained using a portable radiometer over a range of land surfaces including burnt fields, crop canopies, and fallow vegetation at different community ages in slash‐and‐burn ecosystems in Laos. Normalized difference spectral indices (NDSI[i,j] = [Rj ?Ri ]/[Rj +Ri ]) were derived using reflectance Ri and Rj at i and j nm wavelengths for a thorough combination (14 706 pairs) of 172 wavebands (10‐nm resolution). The separability of burnt fields from dry/senescent vegetation was highest at NDSI[1090, 2390], whereas it was highly discriminated from fallow and crop vegetation by NDSI[760, 1970]. NDSIs using 730–760 nm with 1970–1990 nm showed the largest differences between dry/senescent vegetation and fallow or crop vegetation. None of the NDSIs was useful in discriminating between fallow and crop vegetations or between slashed/senescent vegetation and crop residue/abandoned field. Community age and biomass of fallow vegetation could not be inferred directly from spectral information, since no NDSIs showed any significant differences among crop and fallow vegetation that had a large variability in the amount of green vegetation. Results would provide useful information for various applications of optical satellite sensor images especially in assessments of land use or post‐fire regeneration of vegetation.  相似文献   

2.
The apparent electrical conductivity (σa) of soil is influenced by a complex combination of soil physical and chemical properties. For this reason, σa is proposed as an indicator of plant stress and potential community structure changes in an alkaline wetland setting. However, assessing soil σa is relatively laborious and difficult to accomplish over large wetland areas. This work examines the feasibility of using the hyperspectral reflectance of the vegetation canopy to characterize the σa of the underlying substrate in a study conducted in a Central California managed wetland. σa determined by electromagnetic (EM) inductance was tested for correlation with in-situ hyperspectral reflectance measurements, focusing on a key waterfowl forage species, swamp timothy (Crypsis schoenoides). Three typical hyperspectral indices, individual narrow-band reflectance, first-derivative reflectance and a narrow-band normalized difference spectral index (NDSI), were developed and related to soil σa using univariate regression models. The coefficient of determination (R 2) was used to determine optimal models for predicting σa, with the highest value of R 2 at 2206 nm for the individual narrow bands (R 2?=?0.56), 462 nm for the first-derivative reflectance (R 2?=?0.59), and 1549 and 2205 nm for the narrow-band NDSI (R 2?=?0.57). The root mean squared error (RMSE) and relative root mean squared error (RRMSE) were computed using leave-one-out cross-validation (LOOCV) for accuracy assessment. The results demonstrate that the three indices tested are valid for estimating σa, with the first-derivative reflectance performing better (RMSE?=?30.3 mS m?1, RRMSE?=?16.1%) than the individual narrow-band reflectance (RMSE?=?32.3 mS m?1, RRMSE?=?17.1%) and the narrow-band NDSI (RMSE?=?31.5 mS m?1, RRMSE?=?16.7%). The results presented in this paper demonstrate the feasibility of linking plant–soil σa interactions using hyperspectral indices based on in-situ spectral measurements.  相似文献   

3.
Timely and accurate identification of tree species by spectral methods is crucial for forest and urban ecological management. In this study, a total of 394 reflectance spectra (between 350 and 2500 nm) from foliage branches or canopy of 11 important urban forest broadleaf species were measured in the City of Tampa, Florida, USA with a spectrometer. The 11 species include American elm (Ulmus americana), bluejack oak (Quercus incana), crape myrtle (Lagerstroemia indica), laurel oak (Q. laurifolia), live oak (Q. virginiana), southern magnolia (Magnolia grandiflora), persimmon (Diospyros virginiana), red maple (Acer rubrum), sand live oak (Q. geminata), American sycamore (Platanus occidentalis), and turkey oak (Q. laevis). A total of 46 spectral variables, including normalized spectra, derivative spectra, spectral vegetation indices, spectral position variables, and spectral absorption features were extracted and analysed from the in situ hyperspectral measurements. Two classification algorithms were used to identify the 11 broadleaf species: a nonlinear artificial neural network (ANN) and a linear discriminant analysis (LDA). An analysis of variance (ANOVA) indicates that the 30 selected spectral variables are effective to differentiate the 11 species. The 30 selected spectral variables account for water absorption features at 970, 1200, and 1750 nm and reflect characteristics of pigments and other biochemicals in tree leaves, especially variability of chlorophyll content in leaves. The experimental results indicate that both classification algorithms (ANN and LDA) have produced acceptable accuracies (overall accuracy from 86.3% to 87.8%, kappa from 0.83 to 0.87) and have a similar performance for classifying the 11 broadleaf species with input of the 30 selected spectral variables. The preliminary results of identifying the 11 species with the in situ hyperspectral data imply that with current remote sensing techniques, including high spatial and spectral resolution data, it is still difficult but possible to identify similar species to such 11 broadleaf species with an acceptable accuracy.  相似文献   

4.
Soil salinity is a global environmental problem and the most widespread land degradation problem that reduces crop yields and agricultural productivity. The characteristic of soil salinity is conventionally measured by the electric conductivity (EC) of soil while remote-sensing techniques have been extensively applied to detect the presence of salts indirectly through the vegetation using crop spectral reflectance. This study aims primarily to investigate whether salt stress the rice can be detected by field reflectance or not, and second, to search the significant bands of vegetation indices that can indicate the relationships between the EC of soil and field hyperspectral reflectance of canopy, grain, and leaf of rice, using the normalized difference spectral index (NDSI). Field investigations on various paddy fields in northeastern Thailand were carried out in late November 2010 during the ripening season just before harvest in an attempt to realize the applications of the field hyperspectral technique for monitoring the spread of saline soils and estimation of the effects of soil salinity on rice plants. Jasmine rice and glutinous rice were two different rice species selected for this study. Rice plant investigations were conducted by collecting data on crop length, panicle length, canopy openness, leaf area index, and digital photographs of plant conditions from each site. The statistical analysis revealed that the changes in soil EC were significantly sensitive to the ripening stages of both jasmine rice and glutinous rice planted on different levels of soil salinity. Among reflectance measurements, canopy reflectance was highly correlated with soil EC. However, the estimated accuracies of the relationship between soil EC and reflectance of glutinous rice were relatively lower than those of jasmine rice.  相似文献   

5.
A hand-held spectrometer was used to collect above-water spectral measurements for measuring optically active water-quality characteristics of the Wabash River and its tributaries in Indiana. Water sampling was undertaken concurrent with spectral measurements to estimate concentrations of chlorophyll (chl) and total suspended solids (TSS). A method for removing sky and Sun glint from field spectra for turbid inland waters was developed and tested. Empirical models were then developed using the corrected field spectra and in situ chl and TSS data. A subset of the field measurements was used for model development and the rest for model validation. Spectral characteristics indicative of waters dominated by different inherent optical properties (IOPs) were identified and used as the basis of selecting bands for empirical model development. It was found that the ratio of the reflectance peak at the red edge (704 nm) with the local minimum caused by chl absorption at 677 nm was a strong predictor of chl concentrations (coefficient of determination (R2) = 0.95). The reflectance peak at 704 nm was also a good predictor for TSS estimation (R2 = 0.75). In addition, we also found that reflectance within the near-infrared (NIR) wavelengths (700–890 nm) all showed a strong correlation (0.85–0.91) with TSS concentrations and generated robust models. Results suggest that hyperspectral information provided by field spectrometer can be used to distinguish and quantify water-quality parameters under complex IOP conditions.  相似文献   

6.
Remote sensing is a promising tool that provides quantitative and timely information for crop stress detection over large areas. Nitrogen (N) is one of the important nutrient elements influencing grain yield and quality of winter wheat (Triticum aestivum L.). In this study, canopy spectral parameters were evaluated for N status assessment in winter wheat. A winter wheat field experiment with 25 different cultivars was conducted at the China National Experimental Station for Precision Agriculture, Beijing, China. Wheat canopy spectral reflectance over 350–2500 nm at different stages was measured with an ASD FieldSpec Pro 2500 spectrometer (Analytical Spectral Devices, Boulder, CO, USA) fitted with a 25° field of view (FOV) fibre optic adaptor. Thirteen narrow-band spectral indices, three spectral features parameters associated with the absorption bands centred at 670 and 980 nm and another three related to reflectance maximum values located at 560, 920, 1690 and 2230 nm were calculated and correlated with leaf N concentration (LNC) and canopy N density (CND). The results showed that CND was a more sensitive parameter than LNC in response to the variation of canopy-level spectral parameters. The correlation coefficient values between LNC and CND, on the one hand, and narrow-band spectral indices and spectral features parameters, on the other hand, varied with the growth stages of winter wheat, with no predominance of a single spectral parameter as the best variable. The differences in correlation results for the relationships of CND and LNC with narrow-band spectral indices and spectral features parameters decreased with wheat plant developing from Feekes 4.0 to Feekes 11.1. The red edge position (REP) was demonstrated to be a good indicator for winter wheat LNC estimation. The absorption band depth (ABD) normalized to the area of absorption feature (NBD) at 670 nm (NBD670) was the most reliable indicator for winter wheat canopy N status assessment.  相似文献   

7.
This article examines the possibility of exploiting ground reflectance in the near-infrared (NIR) for monitoring grassland phytomass on a temporal basis. Three new spectral vegetation indices (infrared slope index, ISI; normalized infrared difference index, NIDI; and normalized difference structural index, NDSI), which are based on the reflectance values in the H25 (863–881 nm) and the H18 (745–751 nm) Chris Proba (mode 5) bands, are proposed. Ground measurements of hyperspectral reflectance and phytomass were made at six grassland sites in the Italian and Austrian mountains using a hand-held spectroradiometer. At full canopy cover, strong saturation was observed for many traditional vegetation indices (normalized difference vegetation index (NDVI), modified simple ratio (MSR), enhanced vegetation index (EVI), enhanced vegetation index 2 (EVI 2), renormalized difference vegetation index (RDVI), wide dynamic range vegetation index (WDRVI)). Conversely, ISI and NDSI were linearly related to grassland phytomass with negligible inter-annual variability. The relationships between both ISI and NDSI and phytomass were however site specific. The WinSail model indicated that this was mostly due to grassland species composition and background reflectance. Further studies are needed to confirm the usefulness of these indices (e.g. using multispectral specific sensors) for monitoring vegetation structural biophysical variables in other ecosystem types and to test these relationships with aircraft and satellite sensors data. For grassland ecosystems, we conclude that ISI and NDSI hold great promise for non-destructively monitoring the temporal variability of grassland phytomass.  相似文献   

8.
The use of hyperspectral data to estimate forage nutrient content can be a challenging task, considering the multicollinearity problem, which is often caused by high data dimensionality. We predicted some variability in the concentration of limiting nutrients such as nitrogen (N), crude protein (CP), moisture, and non-digestible fibres that constrain the intake rate of herbivores. In situ hyperspectral reflectance measurements were performed at full canopy cover for C3 and C4 grass species in a montane grassland environment. The recorded spectra were resampled to 13 selected band centres of known absorption and/or reflectance features, WorldView-2 band settings, and to 10 nm-wide bandwidths across the 400–2500 nm optical region. The predictive accuracy of the resultant wavebands was assessed using partial least squares regression (PLSR) and an accompanying variable importance (VIP) projection. The results indicated that prediction accuracies ranging from 66% to 32% of the variance in N, CP, moisture, and fibre concentrations can be achieved using the spectral-only information. The red, red-edge, and shortwave infrared (SWIR) wavelength regions were the most sensitive to all nutrient variables, with higher VIP values. Moreover, the PLSR model constructed based on spectra resampled around the 13 preselected band centres yielded the highest sensitivity to the predicted nutrient variables. The results of this study thus suggest that the use of the spectral resampling technique that uses only a few but strategically selected band centres of known absorption or reflectance features is sufficient for forage nutrient estimation.  相似文献   

9.
A field experiment with wheat was conducted with four different nitrogen and four different water stress levels, and hyperspectral reflectances in the 350–2500 nm range were recorded at six crop phenostages for two years (2009–2010 and 2010–2011). Thirty-two hyperspectral indices were determined using the first-year reflectance data. Plant nitrogen (N) status, characterized by leaf nitrogen content (LNC) and plant nitrogen accumulation (PNA), showed the highest R 2 with the spectral indices at the booting stage. The best five predictive equations for LNC were based on the green normalized difference vegetation index (GNDVI), normalized difference chlorophyll index (NDCI), normalized difference705 (ND705) index, ratio index-1dB (RI-1dB) and Vogelman index a (VOGa). Their validation using the second-year data showed high R 2 (>0.80) and ratio of performance to deviation (RPD; >2.25) and low root mean square error (RMSE; <0.24) and relative error (<10%). For PNA, five predictive equations with simple ratio pigment index (SRPI), photochemical reflectance index (PRI), modified simple ratio705 (mSR705), modified normalized difference705 (mND705) and normalized pigment chlorophyll index (NPCI) as predicting indices yielded the best relations with high R 2 > 0.80. The corresponding RMSE and RE of these ranged from 1.39 to 1.13 and from 24.5% to 33.3%, respectively. Although the predicted values show good agreement with the observed values, the prediction of LNC is more accurate than PNA, as indicated by higher RMSE and very high RE for the latter. Hence, the plant nitrogen stress of wheat can be accurately assessed through the prediction of LNC based on the five identified reflectance indices at the booting stage.  相似文献   

10.
This study attempts (1) to evaluate the capability of hyperspectral reflectance to differentiate C3 and C4 grass species, both in isolation and in mixed canopies; (2) to identify the critical spectral ranges that differentiate the two groups and individual species within them; and (3) to determine if there is temporal variation in these capabilities. During one year, hyperspectral reflectance of C3 and C4 grass species was measured both in single-species and in mixed canopies. Spectral bands with higher differentiating potential were identified and species classified. For single-species canopies, hyperspectral reflectance differentiated the two functional groups and most species in all seasons. In mixed canopies, it underestimated the fractional cover of the C4 component. The green, red, and near infrared above 820 nm spectral ranges were critical both for species and functional group differentiation. In conclusion, hyperspectral information was useful to differentiate pure canopies, but the differentiation algorithms were season-specific. Additionally, we need to improve our understanding of interactive effects of species in order to accurately estimate the composition of assemblages.  相似文献   

11.
The objectives of this study were (i) to investigate the feasibility of using spectral reflectance for monitoring As and Cr accumulation in Chinese brake fern (Pteris vitatta), and (ii) to search for spectral indices sensitive to structural changes caused by metal accumulation during the process of phytoremediation. Potted Chinese brake fern plants were exposed to As (100 and 300 ppm) and Cr (300 and 600 ppm) treatments for 22 days. The plants were then harvested and analysed for metal accumulation. Diffuse reflectance spectra (350–2500 nm) of the plant canopies were collected regularly throughout the metal treatment period using a portable spectroradiometer. Leaf reflectance is governed by leaf surface properties, internal structure, and foliar pigments and biochemical components. Leaf samples were collected and analysed for structural changes through microscopic observations. Our microscopic studies on changes of leaf structure provide insight into the physical changes that are remotely detected as changes in reflectance, and may permit extrapolation of these results to other plant species. Cr accumulation resulted in a decrease in biomass, relative water content (RWC), and changes in the internal structure of the leaf. The structural and spectral results show significant changes in Cr‐treated plants while the changes were minimal in As‐treated plants compared to untreated plants. Our spectral analysis revealed that a unique ratio index R 1110/R 810 can be used to monitor structural changes in plants due to accumulation of Cr. This index distinguished Cr‐treated plants from untreated and As‐treated plants. The Normalized Difference Vegetative Index (NDVI) distinguished stressed plants, but NDVI cannot distinguish Cr‐stressed plants from As‐stressed plants. Our results show that brake fern can accumulate significant amounts of Cr in shoots (2108 mg kg?1 dry weight), but it is not a hyperaccumulator for Cr because much higher Cr accumulation was found in roots (7686 mg kg?1 dry weight). This study suggests that the infrared reflectance spectrum (800–1300 nm) of plant canopy may provide a non‐intrusive monitoring method to access the physiological status of plants grown in heavy metal‐contaminated soil.  相似文献   

12.
Although hyperspectral remote sensing has been used to study many agricultural phenomena such as crop stress and diseases, the potential use of this technique for detecting Ganoderma disease infestations and damage to oil palms under field conditions has not been explored to date. This research was conducted to investigate the feasibility of using a portable hyperspectral remote-sensing instrument to identify spectral differences between oil-palm leaves with and without Ganoderma infections. Reflectance spectra of samples representative of three classes of disease severity were collected. The most significant bands for spectral discrimination were selected from reflectance spectra and first derivatives of reflectance spectra. The significant wavelengths were identified using one-way analysis of variance. Then, a Jeffries–Matusita (JM) distance measurement was used to determine spectral separability between the classes. A maximum likelihood classifier method was used to classify the three classes based on the most significant wavelength spectral responses, and an error matrix was finally used to assess the accuracy of the classification.  相似文献   

13.
The focus of our research is to seek spectral signatures that indicate the impact and content of heavy metals in the leaves and canopies of living plants during the process of phytoremediation. Potted plants of barley (Hordeum vulgare) were grown for 5–6 weeks before being subjected to metal treatments of Zn and Cd. Diffuse reflectance spectra (350–2500 nm) of the plant canopies were collected daily using a portable spectroradiometer throughout the treatment period. Foliar structural changes of Zn‐treated plants included a decrease in intercellular space, palisade and epidermal cell size while Cd‐treated plants displayed fewer structural changes in leaf. Spectral analysis revealed that the band ratios at 1110 nm to that at 810 nm might be used as an indicator of the accumulation of certain metals in plant shoots. Normalized Difference Vegetation Index (NDVI) and leaf‐water‐content indices examined as part of our spectral analysis were not able to distinguish plants treated with different metals. Our ratio index R1110/R810, on the other hand, correlates closely with the magnitude of leaf structural changes. This study suggests that the infrared reflectance spectrum (800–1300 nm) of plant canopy might provide a non‐intrusive monitoring method for the physiological status of plants grown on heavy metal contaminated soil.  相似文献   

14.
Assessing crop residue cover using shortwave infrared reflectance   总被引:7,自引:0,他引:7  
Management of crop residues is an important consideration for reducing soil erosion and increasing soil organic carbon. Current methods of measuring residue cover are inadequate for characterizing the spatial variability of residue cover over large fields. The objectives of this research were to determine the spectral reflectance of crop residues and soils and to assess the limits of discrimination that can be expected in mixed scenes. Spectral reflectances of dry and wet crop residues plus three diverse soils were measured over the 400-2400 nm wavelength region. Reflectance values for scenes with varying proportions of crop residues and soils were simulated. Additional spectra of scenes with mixtures of crop residues, green vegetation, and soil were also acquired in corn, soybean, and wheat fields with different tillage treatments. The spectra of dry crop residues displayed a broad absorption feature near 2100 nm, associated with cellulose-lignin, that was absent in spectra of soils. Crop residue cover was linearly related (r2=0.89) to the Cellulose Absorption Index (CAI), which was defined as the relative depth of this absorption feature. Green vegetation cover in the scene attenuated CAI, but was linearly related to the Normalized Difference Vegetation Index (NDVI, r2=0.93). A novel method is proposed to assess soil tillage intensity classes using CAI and NDVI. Regional surveys of soil conservation practices that affect soil carbon dynamics may be feasible using advanced multispectral or hyperspectral imaging systems.  相似文献   

15.
The management of crop residues (non-photosynthetic vegetation) in agricultural fields influences soil erosion and soil carbon sequestration. Remote sensing methods can efficiently assess crop residue cover and related tillage intensity over many fields in a region. Although the reflectance spectra of soils and crop residues are often similar in the visible, near infrared, and the lower part of the shortwave infrared (400-1900 nm) wavelength region, specific diagnostic chemical absorption features are evident in the upper shortwave infrared (1900-2500 nm) region. Two reflectance band height indices used for estimating residue cover are the Cellulose Absorption Index (CAI) and the Lignin-Cellulose Absorption (LCA) index, both of which use reflectances in the upper shortwave infrared (SWIR). Soil mineralogy and composition will affect soil spectral properties and may limit the usefulness of these spectral indices in certain areas. Our objectives were to (1) identify minerals and soil components with absorption features in the 2000 nm to 2400 nm wavelength region that would affect CAI and LCA and (2) assess their potential impact on remote sensing estimates of crop residue cover. Most common soil minerals had CAI values ≤ 0.5, whereas crop residues were always > 0.5, allowing for good contrast between soils and residues. However, a number of common soil minerals had LCA values > 0.5, and, in some cases, the mineral LCA values were greater than those of the crop residues, which could limit the effectiveness of LCA for residue cover estimation. The LCA of some dry residues and live corn canopies were similar in value, unlike CAI. Thus, the Normalized Difference Vegetation Index (NDVI) or similar method should be used to separate out green vegetation pixels. Mineral groups, such as garnets and chlorites, often have wide ranges of CAI and LCA values, and thus, mineralogical analyses often do not identify individual mineral species required for precise CAI estimation. However, these methods are still useful for identifying mineral soils requiring additional scrutiny. Future advanced multi- and hyperspectral remote sensing platforms should include CAI bands to allow for crop residue cover estimation.  相似文献   

16.
Recent advances in imaging, laboratory, and field spectroscopy (sometimes referred to as hyperspectral remote sensing) provide a unique opportunity to obtain critical information needed for understanding nitrogen (N) management in crop production systems. Therefore, the objective of this study was to identify wavelength regions and phenological timing useful for the prediction of N status from canopy and leaf spectra. Leaf and canopy spectral data were collected using an ASD FieldSpec FR spectroradiometer (350–2500 nm) at monthly intervals during 2011 and 2012. The crops evaluated in the study were switchgrass ‘Alamo’ (Panicum virgatum L.) and high biomass sorghum ‘Blade 5200’ (Sorghum bicolor) grown to evaluate N applications rates on biomass yield and quality. The optimal wavelengths were determined based on principal component analysis (PCA) and the separation of the N treatments using stepwise discriminant analysis (SDA). The results showed similar canopy and leaf-scale reflectance for high biomass sorghum but not for switchgrass. The wavelengths found to be most important for separating the N treatments were 520–560, 650–690 nm (visible region), and 710–730 nm (red-edge region). Triangular greenness index (TGI) was the most useful index for discriminating the N application rates. The best time for differentiating the different N treatments was 4–6 weeks after planting or 2–4 weeks after N fertilization in high biomass sorghum and within 4 weeks after green-up in switchgrass. In general, the results indicate that spectroscopy is a viable tool that could be used to estimate the biochemical and biophysical characteristics in bioenergy crop production systems.  相似文献   

17.
This research estimates phytoplankton pigment concentrations (chlorophyll‐a (chl‐a) and phycocyanin (PC)) from hyperspectral Airborne Imaging Spectrometer for Applications (AISA) imagery. AISA images were acquired for a meso‐eutrophic reservoir in Central Indiana, USA. Concurrent with the airborne image acquisition, in situ water samples and reflectances were collected. The water samples were subsequently analysed for pigment concentrations, and in situ measured reflectance spectra were used for calibrating the AISA images. Spectral indices, derived from the AISA reflectance spectra, were regressed against the measured pigment concentrations to derive algorithms for estimating chl‐a and PC. The relationship between the pigment concentrations and the spectral indices were analysed and evaluated. The results indicate that the highest correlation occurred between chl‐a and a near‐infrared to red ratio (coefficient of determination R 2?=?0.78) and between PC and the reflectance trough at 628 nm (R 2?=?0.80). The relationship between PC and the reflectance at 628 nm provides an approach to the estimation of cyanobacteria concentration from hyperspectral imagery, which facilitates water‐quality authorities or management agencies in making well‐informed management decisions.  相似文献   

18.
We explored simple and useful spectral indices for estimating photosynthetic variables (radiation use efficiency and photosynthetic capacity) at a canopy scale based on seasonal measurements of hyperspectral reflectance, ecosystem CO2 flux, and plant and micrometeorological variables. An experimental study was conducted over the simple and homogenous ecosystem of an irrigated rice field. Photosynthetically active radiation absorbed by the canopy (APAR), the canopy absorptivity of APAR (fAPAR), net ecosystem exchange of CO2 (NEECO2) gross primary productivity (GPP), photosynthetic capacity at the saturating APAR (Pmax), and three parameters of radiation use efficiency (εN: NEECO2/APAR; εG: GPP/APAR; φ: quantum efficiency) were derived from the data set. Based on the statistical analysis of relationships between these ecophysiological variables and reflectance indicators such as normalized difference spectral indices (NDSI[i,j]) using all combinations of two wavelengths (i and j nm), we found several new indices that would were more effective than conventional spectral indices such as photochemical reflectance index (PRI) and normalized difference vegetation index (NDVI = NDSI[near-infrared, red]). εG was correlated well with NDSI[710, 410], NDSI[710, 520], and NDSI[530, 550] derived from nadir measurements. φ was best correlated with NDSI[450, 1330]. NDSI[550, 410] and NDSI[720, 420] had a consistent linear relationships with fAPAR throughout the growing season, whereas conventional indices such as NDVI showed very different relationships before and after heading. Off-nadir measurements were more closely related to the efficiency parameters than nadir measurements. Our results provide useful insights for assessing plant productivity and ecosystem CO2 exchange, using a wide range of available spectral data as well as useful information for designing future sensors for ecosystem observations.  相似文献   

19.
A useful method was developed to establish a diagnostic model using hyperspectral remote sensing to predict and monitor acid stress on plants. We analysed the hyperspectral response of Chinese fir to acid rain by measuring the spectral reflectance of the seedling leaves, sprayed by simulated acid rain (pH, 2.5, 4.0, and 5.6), for three periods. The sensitive bands were located and the rules for predicting classes of simulated acid stress on Chinese fir were established using a classification and regression tree (CART) approach. The acid-sensitive bands of Chinese fir were nearly all located between 380 and 410 nm, 460 and 560 nm, and 640 and 750 nm. CART predictor variables, which were selected from sensitive bands, reduce data dimensionality significantly. The misclassification errors of the CART training process in correctly attributing variables to respective target classes are 7.78%, 6.67%, and 11.67% respectively, at each measurement period, and the cross-validation misclassification errors are 16.6%, 11.1%, and 23.3%, respectively. Our results show that the spectral reference bands, which are related to chlorophyll-a and b around 670 and 450 nm, as well as the slight peak in the green around 550 nm, significantly affected the classification accuracy on acid stress. These provide useful optical response to acid stress.  相似文献   

20.
Fresh leaf spectral reflectance is primarily influenced by leaf water content and structural aspects such as the inter-cellular spaces within the spongy mesophyll, which also interfere with the estimation of the leaf nitrogen content. It is therefore essential to identify spectral bands that are least affected by the above perturbing factors for improving leaf nitrogen estimation for fresh leaves across any landscape. Wavelengths selection plays a vital role in identifying the best spectral features for assessing leaf nitrogen concentration from hyperspectral data of dry and fresh leaves. The primary objective of this study was to determine typical optimal bands for leaf nitrogen estimation from spectra (400–2500 nm) of whole fresh and dry leaves for the same specimens of Eucalyptus grandis. This was achieved via the use of competitive adaptive re-weighted sampling (CARS), and Monte Carlo cross-validation-competitive adaptive re-weighted sampling (MCCV-CARS) band selection approaches. Bands selected (931 nm, 1003 nm, 1027 nm, 1036 nm, 1177 nm, and 1180 nm) via the MCCV-CARS approach yielded the highest estimation accuracy for both fresh predicted coefficient of determination (R2cal) = 0.82 and predicted root mean square error (RMSEP) = 0.14) and dry leaves (R2P = 0.88 and RMSEP = 0.13) when compared to CARS (2044 nm, 2107 nm, and 2188 nm) only. The identified spectral features could be relevant for assessing leaf nitrogen concentration for different seasons, for example, wet to dry season.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号