首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Normal sintering of Li-doped and Li/Ta-codoped potassium sodium niobate (KNbO3–NaNbO3, KNN)-based ceramics was investigated to clarify the optimal sintering condition for densification, microstructure, and electrical properties. It was found that density increased greatly within a narrow temperature range but tended to decrease when the sintering temperature slightly exceeded the optimal one, accompanied by the appearance of abnormal grain growth, which was considered to be due to the intensified volatilization of alkali metal oxides. Piezoelectric and dielectric properties also showed a similar relationship between the density and sintering temperature, but the highest piezoelectric strain coefficients were obtained at the temperatures lower than that for the highest density, because both densification and composition affect the electrical properties. The highest d 33 value of 206 pC/N was obtained for the Li- and Ta-codoped KNN ceramics prepared at 1090°C.  相似文献   

2.
Conventional sintering of (Na1− x K x )0.5Bi0.5TiO3 (abbreviated as NKBT x , x =18–22 mol%) lead-free piezoelectric ceramics was investigated to clarify the optimal sintering temperature for densification and electrical properties. Both sintered density and electrical properties were sensitive to sintering temperature; particularly, the piezoelectric properties deteriorated when the ceramics were sintered above the optimum temperature. The NKBT20 and NKBT22 ceramics synthesized at 1110°–1170°C showed a phase transition from tetragonal to rhombohedral symmetry, which was similar to the morphotropic phase boundary (MPB). Because of such MPB-like behavior, the highest piezoelectric constant ( d 33) of about 192 pC/N with a high electromechanical coupling factor ( k p) of about 32% were obtained in the NKBT22 ceramics sintered at 1150°C.  相似文献   

3.
潘永军  王锋会  刘琨 《陶瓷》2014,(3):24-27
采用传统陶瓷工艺制备了0.95(K0.5Na0.5)NbO3-0.05CaZrO3无铅压电陶瓷。研究了烧结温度和极化工艺对陶瓷压电性能的影响。结果表明:随着烧结温度的提高,0.95(K0.5Na0.5)NbO3-0.05CaZrO3陶瓷的体积密度增大,在1170℃时达到最大值,同时d33和kp,在此温度也分别达到他们的最大值210pC/N和0.40。极化工艺对0.95(K0.5Na0.5)NbO3-0.05CaZrO3陶瓷的压电性能有明显的影响,0.95(K0.5Na0.5)NbO3-0.05CaZrO3陶瓷的最佳极化温度是70℃,最佳极化电场是4kV/mm。  相似文献   

4.
The objective of this work was to lower the sintering temperature of K0.5Na0.5NbO3 (KNN) without reducing its piezoelectric properties. The KNN was sintered using 0.5, 1, 2, and 4 mass% of (K, Na)-germanate. The influence of the novel sintering aid, based on alkaline germanate with a melting point near 700°C, on the sintering, density, and piezoelectric properties of KNN is presented. The alkaline-germanate-modified KNN ceramics reach up to 96% of theoretical density at sintering temperatures as low as 1000°C, which is approximately 100°C less than the sintering temperature of pure KNN. The relative dielectric permittivity (ɛ/ɛ0) and losses (tanδ), measured at 10 kHz, the piezo d 33 coefficient, the electromechanical coupling and mechanical quality factors ( k p, k t, Q m) of KNN modified with 1 mass% of alkaline germanate are 397, 0.02, 120 pC/N, 0.40, 0.44, and 77, respectively. These values are comparable to the best values obtained for KNN ceramics sintered above 1100°C.  相似文献   

5.
赵金秋  刘艳改  高广智  黄朝晖  房明浩 《硅酸盐学报》2012,40(3):351-352,353,354,355,356
采用溶胶–凝胶法制备Li+取代(K0.5Na0.5)+及Ta5+取代Nb5+的(K0.5Na0.5)NbO3陶瓷粉体,采用无压烧结工艺制备(Na0.50+xK0.50–2xLix)Nb0.9Ta0.1O3(x=0,0.02,0.04)陶瓷样品。研究了前驱体煅烧温度对陶瓷粉体物相组成的影响。分析了不同Li+掺杂量对样品物相组成、微观结构、体积密度及电学性能的影响。结果表明:前驱体的最佳煅烧温度为600℃,通过透射电子显微镜分析陶瓷粉体的粒径为49nm;不同Li+掺杂量制备的(Na0.50+xK0.50–2xLix)Nb0.9Ta0.1O3陶瓷样品均为正交相钙钛矿结构;随着Li+掺杂量的增加,(Na0.50+xK0.50–2xLix)Nb0.9Ta0.1O3陶瓷的体积密度先增大后减小,介电常数逐渐升高,压电常数先降低再升高,剩余极化强度逐渐升高。Li+掺杂量x为0.04时样品的压电常数(d33=94pC/N)、相对介电常数(εr=684.33)及剩余极化强度(Pr=98.27μC/cm2)较好。  相似文献   

6.
Lead-free piezoelectric ceramics have received attention because of increasing interest in environmental protection. Niobate ceramics such as NaNbO3 and KNbO3 have been studied as promising Pb-free piezoelectric ceramics, but their sintering densification is fairly difficult. In the present study, highly dense Na0.5K0.5NbO3 ceramics were prepared using spark plasma sintering (SPS). Although the SPS temperature was as low as 920°C, the density of the Na0.5K0.5NbO3 solid solution ceramics was raised to 4.47 g/cm3 (>99% of the theoretical density). After post-annealing in air, reasonably good ferroelectric and piezoelectric properties were obtained in the Na0.5K0.5NbO3 ceramics with submicron grains. The crystal phase of the Na0.5K0.5NbO3 has an orthorhombic structure. The Curie temperature is 395°C and the piezoelectric parameter ( d 33) of the Na0.5K0.5NbO3 ceramics reached 148 pC/N.  相似文献   

7.
Lead-free (Na0.5K0.5)NbO3 ceramics doped with CaTiO3 (0–3 mol%) have been prepared by the conventional mixed oxide method in this paper. All of the CaTiO3 doped (Na0.5K0.5)NbO3 specimens do not deliquesce as exposed to water for a long time. The samples are characterized by X-ray diffraction analysis, Raman scattering spectra, scanning electron microscopy, and atomic force microscopy. The dielectric, piezoelectric and ferroelectric properties are also investigated. The results show that the addition of CaTiO3 is very effective in preventing the deliquescence and in improving the electric properties of (Na0.5K0.5)NbO3 ceramics. Finally, surface acoustic wave devices based on lead-free ceramics have been successfully fabricated and their characterization is presented.  相似文献   

8.
Microstructure characteristics, phase transition, and electrical properties of (Na0.535K0.485)0.926Li0.074(Nb0.942Ta0.058)O3 (NKN-LT) lead-free piezoelectric ceramics prepared by normal sintering are investigated with an emphasis on the influence of sintering temperature. Some abnormal coarse grains of 20–30 μm in diameter are formed in a matrix consisting of about 2 μm fine grains when the sintering temperature was relatively low (980°C). However, only normally grown grains were observed when the sintering temperature was increased to 1020°C. On the other hand, orthorhombic and tetragonal phases coexisted in the ceramics sintered at 980°–1000°C, whereas the tetragonal phase becomes dominant when sintered above 1020°C. For the ceramics sintered at 1000°C, the piezoelectric constant d 33 is enhanced to 276 pC/N, which is a high value for the Li- and Ta-modified (Na,K)NbO3 ceramics system. The other piezoelectric and ferroelectric properties are as follows: planar electromechanical coupling factor k p=46.2%, thickness electromechanical coupling factor k t=36%, mechanical quality factor Q m=18, remnant polarization P r=21.1 μC/cm2, and coercive field E c=1.85 kV/mm.  相似文献   

9.
PZT-based solid solutions are very attractive piezoelectric ceramics, because they exhibit excellent piezoelectric properties such as large piezoelectric constant. In this paper we describe the relationship between piezoelectric properties and compositions, and sintering behavior of PbNiNbTiO3–PbTiO3–PbZrO3 (PNN–PT–PZ) ceramics and applications to the microactuators for magnetic disk drives. The MPB composition was determined by the temperature dependence of the relative permittivity and XRD patterns. The large piezoelectric constant (d33 = 1100 pm/V) was obtained at the MPB composition. Unique rotating symmetrical microactuators using PNN–PT–PZ ceramics show both wide stroke and high-resonant frequency. In this paper we also describe the applications of piezoelectric ceramics to tunable superconductive filters for future wireless communication systems. Low-temperature piezoelectric properties of PZT-based ceramics and frequency tunable mechanisms will be discussed. This work was supported in part by the Ministry of Internal Affairs and Communications (MIC) of Japan.  相似文献   

10.
A facile hydrothermal route was adopted for synthesis of lead-free piezoceramics (K, Na)NbO3 powders. The influences of temperature and KOH/NaOH concentration on the resultant powders were investigated. Although two similar perovskite phases appeared when K/Na ratio tended toward 1:1, the two-phase coexistence tendency was weakened by increasing hydrothermal reaction temperature, and consequently only one phase could be obtained after spark plasma sintering. Reasonably good ferroelectric and piezoelectric properties were obtained for the samples after postannealing, whose piezoelectric constant ( d 33) reached 135 pC/N. The optimal remnant polarization ( P r) and mechanical quality factor ( Q m) were 26.2 μC/cm2 and 164, respectively, which were both twice as much as those of the samples using powders prepared from solid-state reaction.  相似文献   

11.
采用溶胶–凝胶法制备Li+取代(K0.5Na0.5)+及Ta5+取代Nb5+的(K0.5Na0.5)NbO3陶瓷粉体,采用无压烧结工艺制备(Na0.50+xK0.50–2xLix)Nb0.9Ta0.1O3(x=0,0.02,0.04)陶瓷样品。研究了前驱体煅烧温度对陶瓷粉体物相组成的影响。分析了不同Li+掺杂量对样品物相组成、微观结构、体积密度及电学性能的影响。结果表明:前驱体的最佳煅烧温度为600℃,通过透射电子显微镜分析陶瓷粉体的粒径为49 nm;不同Li+掺杂量制备的(Na0.50+xK0.50–2xLix)Nb0.9Ta0.1O3陶瓷样品均为正交相钙钛矿结构;随着Li+掺杂量的增加,(Na0.50+xK0.50–2xLix)Nb0.9Ta0.1O3陶瓷的体积密度先增大后减小,介电常数逐渐升高,压电常数先降低再升高,剩余极化强度逐渐升高。Li+掺杂量x为0.04时样品的压电常数(d33=94 pC/N)、相对介电常数(εr=684.33)及剩余极化强度(Pr=98.27μC/cm2)较好。  相似文献   

12.
采用传统陶瓷工艺,研究了制备[(Na0.5Bi0.5)0.82(K0.5Bi0.5)0.18]1-xLaxTiO3(x=0.00,0.01,0.03,0.05,0.10)无铅压电陶瓷的工艺条件对陶瓷的物相组成、显微结构和压电性能的影响。利用XRD、SEM等技术分析结果表明,合成温度的提高有利于主晶相的形成,且此系统烧成温度范围较窄,故需控制在合适的烧成温度下才能得到高致密度的陶瓷。同时,研究了极化工艺条件对材料压电性能的影响,结果表明,提高极化电场强度、控制适当的极化温度有利于提高材料的压电性能。  相似文献   

13.
采用传统陶瓷工艺,研究了制备[(Na0.5Bi0.5)0.82(K0.5Bi0.5)0.18]1-xLaxTiO3(x=0.00,0.01,0.03,0.05,0.10)无铅压电陶瓷的工艺条件对陶瓷的物相组成、显微结构和压电性能的影响。利用XRD、SEM等技术分析结果表明,合成温度的提高有利于主晶相的形成,且此系统烧成温度范围较窄,故需控制在合适的烧成温度下才能得到高致密度的陶瓷。同时,研究了极化工艺条件对材料压电性能的影响,结果表明,提高极化电场强度、控制适当的极化温度有利于提高材料的压电性能。  相似文献   

14.
[(K x Na1− x )0.95Li0.05](Nb0.95Ta0.05)O3 (K x NLNT) ( x= 0.40–0.60) lead-free piezoelectric ceramics were prepared by conventional solid-state sintering. The effects of K/Na ratio on the dielectric, piezoelectric, and ferroelectric properties of the K x NLNT ceramics were studied. The experimental results show that the electrical properties strongly depend on the K/Na ratio in the K x NLNT ceramics. The K x NLNT ( x =0.42) ceramics exhibit enhanced properties ( d 33∼242 pC/N, k p∼45.7%, k t∼47%, T c∼432°C, T o−t =48°C, ɛr∼1040, tanδ∼2.0%, P r∼26.4 μC/cm2, E c∼10.3 kV/cm). Enhanced electrical properties of the K x NLNT ( x =0.42) ceramics could be attributed to the polymorphic phase transition near room temperature. These results show that the K x NLNT ( x =0.42) ceramic is a promising lead-free piezoelectric material.  相似文献   

15.
A unique core–shell structure was observed in coarse grains in (K,Na)NbO3 (KNN)-based lead-free piezoelectric ceramics. It is morphologically different from the chemical inhomogeneity-induced core–shell grain structure reported previously in BaTiO3-based ceramics. The core region is composed of highly parallel nanosized subgrains, whereas the shell region consists of larger-sized but similar self-assembled subgrains. The electron-backscattered diffraction analysis and selected area electron diffraction pattern confirmed that coarse grains with a core–shell structure were single-crystalline-like grains. The formation process of such coarse grains was then discussed based on mesocrystal growth along with the classical theory of grain growth. The two studied KNN-based systems showed a similar grain growth transformation: from self-assembled aggregation clusters with nanosized subgrains to a typical core–shell grain structure when the sintering temperature was increased only by a range of 10°–20°C. The volatilized alkali metal oxides and liquid phase were supposed to accelerate such grain growth transformation. When abnormal grown grains with a core–shell structure occurred, both systems showed the highest densities and dielectric constants along with the lowest dielectric losses, while their piezoelectric properties tended to decline.  相似文献   

16.
Since the electromechanical devices move towards enhanced power density, high mechanical quality factor (Qm) and electromechanical coupling factor (kp) are commonly needed for the high powered piezoelectric transformer with Qm≥2000 and kp=0.60. Although Pb(Mn1/3Nb2/3)O3–PbZrO3–PbTiO3 (PMnN–PZ–PT) ceramic system has potential for piezoelectric transformer application, further improvements of Qm and kp are needed. Addition of 2CaO–Fe2O3 has been proved to have many beneficial effects on Pb(Zr,Ti)O3 ceramics. Therefore, 2CaO–Fe2O3 is used as additive in order to improve the piezoelectric properties in this study. The piezoelectric properties, density and microstructures of 0.07Pb(Mn1/3Nb2/3)O3–0.468PbZrO3–0.462PbTiO3 (PMnN–PZ–PT) piezoelectric ceramics with 2CaO–Fe2O3 additive sintered at 1100 and 1250 °C have been studied. When sintering temperature is 1250 °C, Qm has the maximum 2150 with 0.3 wt.% 2CaO–Fe2O3 addition. The kp more than 0.6 is observed for samples sintered at 1100 °C. The addition of 2CaO–Fe2O3 can significantly enhance the densification of PMnN–PZ–PT ceramics when the sintering temperature is 1250 °C. The grain growth occurred with the amount of 2CaO–Fe2O3 at both sintering temperatures.  相似文献   

17.
Lead-free piezoelectric Na x K1− x NbO3 ( x =20–80 mol%) ceramics were fabricated using spark plasma sintering at a low temperature (920°C). All the Na x K1− x NbO3 ceramics showed a similar orthorhombic phase structure, while the corresponding lattice parameters decreased from the KNbO3 side to the NaNbO3 side with increasing Na content. A discontinuous change in lattice parameter close to composition of 60 mol% Na indicated the presence of a transitional area that is similar to the morphotropic phase boundary (MPB) in Na x K1− x NbO3 ceramics. The sintered density of the Na x K1− x NbO3 ceramics decreased with increasing Na content, from a relative density of 99% for the K-rich side to 92% for the Na-rich side. The piezoelectric constant d 33 and planar mode electromechanical coupling coefficient k p showed a maximum value of 148 pC/N and 38.9%, respectively, due to the similar MPB effects in the PZT system.  相似文献   

18.
Pb(Zr, Ti)O3 ceramics have been elaborated by low temperature sintering at 900°C with the aid of oxyfluoride additives. The mixture of PbO and PbF2 (eutectic composition) allowed to achieve the densification of more than 98% of the theoretical density. The dielectric, piezoelectric and pyroelectric properties of thus obtained ceramics were investigated.  相似文献   

19.
In an attempt to obtain dense PbNb2O6 ceramics, sintering experiments were conducted using starting powders with various particle sizes and different modifications (rhombohedral and orthorhombic structures). During sintering of rhombohedral powders, the phase transformation to the tetragonal phase promoted grain growth, resulting in poor densification. Sintering of orthorhombic powders, however, yielded dense ceramics through suppression of the phase transformation. Based on these results, ceramics with various densities and different microstructures were prepared, and their dielectric and piezoelectric properties were evaluated. The dielectric constant and Curie temperature were dependent on density, grain size, and crack density. Cracks and intragrain pores severely deteriorated the piezoelectric properties. Dense ceramics with the maximum coupling factors and piezoelectric strain constants were obtained by prolonged heating of a fine powder with orthorhombic structure.  相似文献   

20.
As a candidate for lead-free piezoelectric materials, Li2O-excess 0.95(Na0.5K0.5)NbO3–0.05LiTaO3 (NKN–5LT) ceramics were developed by a conventional sintering process. The sintering temperature was lowered by adding Li2O as a sintering aid. Abnormal grain growth in NKN–5LT ceramics was observed with varying Li2O content. This grain-growth behavior was explained in terms of interface reaction-controlled nucleation and growth. In the 1 mol% Li2O excess NKN–5LT samples sintered at 1000°C for 4 h in air, the electromechanical coupling factor and the piezoelectric constant of NKN–5LT ceramics were found to reach the highest values of 0.37 and 250 pC/N, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号