首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 281 毫秒
1.
芳纶表面改性技术进展(二)——化学改性方法   总被引:4,自引:3,他引:1  
对芳纶表面改性的化学方法进行了概述。论述了表面刻蚀技术、表面接枝技术在芳纶表面改性过程中的应用过程、反应原理、改性效果,对化学改性技术的优缺点进行了分析,指出了其进一步的发展趋势。  相似文献   

2.
芳纶表面改性技术进展(一)——物理改性方法   总被引:4,自引:4,他引:0  
简单介绍了芳纶Ⅱ、芳纶Ⅲ及Technora 3种对位芳纶,并对芳纶表面改性的物理方法进行了概述。综合论述了表面涂层技术、等离子体技术、超声波技术、γ-射线技术在芳纶表面改性过程中的应用过程、反应原理及改性效果。结合应用实践,对相关物理改性技术的应用进行了探讨和展望。  相似文献   

3.
改性聚酰胺纤维的开发现状及发展趋势   总被引:1,自引:0,他引:1  
介绍了聚酰胺纤维的改性品种;详述了聚酰胺纤维的改性方法,其中物理改性主要有共混纺丝法、复合纺丝法、异形纺丝法及静电纺丝法,化学改性主要有共聚改性、交联改性、表面化学改性及络合改性,生物改性包括生物酶改性及生物基聚酰胺的合成;指出我国聚酰胺纤维的改性今后将朝着改性技术的多元化、服用性能的提升及产业用高性能纤维等方面发展,同时应加强改性产品的应用研究。  相似文献   

4.
纳米氧化锌的制备和表面改性技术进展   总被引:12,自引:0,他引:12  
综述了化学沉淀法、醇盐水解法、微乳液法、固相合成法、溶胶 凝胶法和喷雾热解法的主要特点与优缺点,并对纳米氧化锌的表面改性方法:即表面包覆改性法、表面化学改性法、机械力化学改性法、沉淀反应改性法、外膜层改性(胶囊)法和高能表面改性法进行了概述。  相似文献   

5.
综述了氢氧化铝粉体在应用领域存在的主要问题,解释了氢氧化铝粉体表面化学改性的机理。详细地介绍了国内外氢氧化铝粉体的表面化学改性的方法,主要包括酯化反应法、偶联剂法、表面活性剂吸附法以及聚合物包覆法。经研究表明,氢氧化铝粉体表面化学改性后扩宽了其应用领域,具有良好的前景。  相似文献   

6.
从物理改性和化学改性两个方面综述了目前芳纶常规表面改性方法,并分析了这些表面改性方法原理、现状和优缺点;另外详细阐述了把改性后的芳纶用在胶管、胶带、输送带、传动带、轮胎以及其它常见橡胶制品中,通过试验数据说明了改性后的芳纶能显著提高橡胶制品多方面的性能。并预示了随着对芳纶纤维应用研究的深入,芳纶表面改性及其在橡胶制品中广阔的应用前景。  相似文献   

7.
从物理改性和化学改性两个方面综述了目前芳纶常规表面改性方法,并分析了这些表面改性方法原理、现状和优缺点;另外详细阐述了把改性后的芳纶用在胶管、胶带、输送带、传动带、轮胎以及其它常见橡胶制品中,通过试验数据说明了改性后的芳纶能显著提高橡胶制品多方面的性能。并预示了随着对芳纶纤维应用研究的深入,芳纶表面改性及其在橡胶制品中广阔的应用前景。  相似文献   

8.
介绍了芳纶纤维的表面改性技术进展,及其在高分子复合材料中的应用效果,对表面涂覆、表面辐照、等离子体、表面氧化、表面接枝等物理或化学的芳纶纤维表面改性方法的原理和实施效果进行了重点描述,对芳纶纤维的表面改性技术的现状进行了评述。兼顾环境友好、纤维损伤小、高表面活化的高效和环保的表面改性技术的复合化是芳纶纤维表面改性技术的发展趋势。  相似文献   

9.
纳米氧化镁粉体表面改性技术的研究进展   总被引:1,自引:0,他引:1  
曹颖  王国胜 《辽宁化工》2008,37(2):118-121,138
简述了纳米氧化镁表面改性的原因,并对纳米氧化镁的表面改性方法(物理改性和化学改性法):即表面包覆改性法、表面化学改性法、机械力化学改性法、沉淀反应改性法、外膜层改性(胶囊)法、和高能表面改性法进行了概述.着重介绍了表面活性剂、偶联剂在纳米氧化镁表面改性方面的应用,并对纳米氧化镁改性方面的研究提出了建议.  相似文献   

10.
聚酰亚胺胶粘剂改性技术研究进展   总被引:1,自引:1,他引:0  
介绍了近年来聚酰亚胺(PI)胶粘剂的常见改性方法。重点分析和总结了PI胶膜表面化学改性方法(包括等离子体改性、离子束改性、化学试剂改性和表面接枝聚合改性等)和PI胶粘剂材料化学改性方法,并对PI胶粘剂改性技术的未来发展趋势进行了展望。  相似文献   

11.
综述了介质阻挡放电应用于芳纶表面改性研究的最新进展;介绍了介质阻挡放电的机理、特点以及国内主要的介质阻挡放电等离子体的设备;阐述了介质阻挡放电对芳纶亲水性能和粘结性能等表面性能的改善。指出芳纶等离子体表面改性的时间效应限制了其广泛应用,应进一步加强纤维表面等离子体改性的机理研究。  相似文献   

12.
芳纶纤维改性技术是当今的研究热点,分析了芳香族聚酰胺纤维目前存在的问题,比较了芳纶纤维的各种改性技术的进展,包括物理改性中的表面涂层技术、等离子体技术、超声浸渍改性技术、γ-射线改性技术,化学改性中的表面刻蚀技术改性、基于酰胺键的化学反应、基于苯环的反应以及功能改性法,并对我国芳纶纤维的工业发展前景做出了展望。  相似文献   

13.
FriedelCrafts Reaction as a simple and convenient approach to the surface modification of aramid fiber was introduced in this paper. Epoxy chloropropane was chosen as the treatment reagent to modify aramid fibers surface via Graft reaction. After the modification, the interfacial properties of aramid/epoxy composites were investigated by the single fiber pull-out test (SFP), and the mechanical properties of aramid fibers were investigated by the tensile strength test. The results showed that the interfacial shear strength (IFSS) value of aramid/epoxy composites was enhanced by about 50%, and the tensile strength of aramid fibers had no obvious damage. The crystalline state of aramid fibers was determined by X-ray diffraction instrument (XRD), and the results showed that there were not any distinct crystal type varieties. The surface elements of aramid fibers were determined by X-ray photoelectron spectroscopy (XPS), the analysis of which showed that the oxygen/carbon ratio of aramid fiber surface increased obviously. The possible changes of the chemical structure of aramid fibers were investigated via Fourier transform infrared spectrum (FTIR), and the analysis of which showed that the epoxy functional groups were grafted into the molecule structure of aramid fibers. The surface morphology of aramid fibers was analyzed by Scanning electron microscope (SEM), and the SEM results showed that the physical structure of aramid fibers was not etched or damaged obviously. The surface energy of aramid fibers was investigated via the dynamic capillary method, and the results showed that the surface energy was enhanced by 31.5%, and then the wettability degree of aramid fiber surface was enhanced obviously too. All of the results indicated that this novel chemical modification approach not only can improve the interfacial bonding strength of aramid/epoxy composites remarkably, but also have no negative influence on the intrinsic tensile strength of aramid fibers.  相似文献   

14.
《合成纤维》2017,(4):43-46
采用硅烷偶联剂对芳纶进行改性,然后用傅里叶红外光谱仪、单一纤维接触角测试仪和X射线衍射仪对改性前后的芳纶进行测试、观察并分析。结果显示:红外光谱分析表明芳纶的改性发生在纤维的表面,并没有对纤维大分子产生明显破坏;接触角测试表明改性后芳纶的接触角变小,说明KH550硅烷偶联剂可改善芳纶的亲水性;X射线衍射测试表明芳纶结晶度有所下降,可以更好地与树脂黏结。  相似文献   

15.
利用湿化学方法在芳纶Ⅲ表面预制氧化锌(ZnO)晶种层,再在晶种膜的基础上制备出了垂直生长的ZnO纳米棒阵列。采用X射线衍射(XRD)、场发射扫描电镜(FE-SEM)和微脱黏试验对纤维表面的组成、形貌及复合材料的界面黏结性能进行了研究。结果表明:纤维表面生长的ZnO纳米棒阵列属于六方纤锌矿晶相,纳米棒垂直生长在纤维表面,增大了与基体的接触面积,能够使纤维更好地与环氧树脂基体间发生界面结合,进而有效改善芳纶Ⅲ-环氧复合材料的界面黏接强度。  相似文献   

16.
Various compounds were used for the surface treatment of aramid fibers in order to promote adhesion to polymeric matrices. The improvement of adhesive bond could be based either on the roughness of fiber surface or on chemical modification introduced by grafting. The compounds used are more or less reactive to the secondary amide groups, present on the aramid chain. Thus, the fibers were impregnated with acetic acid anhydride, sulfuric acid–acrylamide, and methacryloyl chloride. The effect of such treatment was first evaluated by optical microscopy and infrared analysis. Tensile measurements were also carried out in order to define any changes of strength and modulus. Finally, tensile specimens were prepared using unsaturated polyester reinforced with aramid fibers and the effect of chemical treatment on the tensile strength was determined. From the above study, methacryloyl chloride was proved an effective coupling agent with possible grafting to aramid fibers.  相似文献   

17.
对俄罗斯芳纶做了全面的综述,详细介绍了其间位芳纶、对位芳纶和杂环芳纶的发展概况、化学结构、性能及应用等,重点介绍了对位杂环芳纶SVM、Armos和Rusar的发展及应用情况,最后展望了杂环芳纶的应用前景。  相似文献   

18.
利用L-3,4-二羟基苯丙氨酸(L-DOPA)的氧化自聚合,在杂环芳纶表面修饰聚L-3,4-二羟基苯丙氨酸(PDOPA)活性涂层来提高芳纶的表面活性及耐紫外辐照性能。结果表明:改性后芳纶表面粗糙度显著提高,同时,PDOPA涂层上大量的羧基、羟基等活性单元均有利于增强与环氧树脂的机械锁合力,改性后芳纶/环氧树脂复合材料的界面剪切强度提高了32.0%。此外,上述改性过程对杂环芳纶本身力学性能影响较小,纤维的拉伸强度保持率可以达到100%,基本实现了无损改性。同时,由于PDOPA的保护作用,改性后芳纶的耐紫外辐射性能显著提高;经过168 h紫外线辐照处理后,其拉伸强度保持率可达到92.5%,显著提升了杂环芳纶的耐紫外线辐照特性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号