共查询到18条相似文献,搜索用时 78 毫秒
1.
提出了二维主成分分析(2DPCA)与二维线性鉴别分析(2DLDA)相结合的双向压缩投影的子空间人脸识别方法.该方法在进行一次2DPCA运算后,对特征矩阵进行转置,再进行2DLDA运算,与(2D)~2PCA与(2D)~2LDA相比,充分利用了2DPCA和2DLDA的优点,既包含了样本的类别信息,又消除了图像矩阵行和列的相关性,有效地提取了行和列的识别信息,识别特征维数也大幅度减少.在ORL和PERET人脸库上的实验表明,在不影响识别速度的情况下,其识别率优于现有二维特征提取方法. 相似文献
2.
基于二维主成分分析(2DPCA),文章提出了分块二维主成分分析(M2DPCA)人脸识别方法。M2DPCA从模式的原始数字图像出发,先对图像进行分块,对分块得到的子图像矩阵采用2DPCA方法进行特征抽取,从而实现模式的分类。新方法的特点是能有效地抽取图像的局部特征,正是这些特征使此类模式区别于彼类。在ORL人脸数据库上测试了该方法的鉴别能力。实验的结果表明,M2DPCA在鉴别性能上优于通常的2DPCA和PCA方法,也优于基于Fisher鉴别准则的鉴别分析方法:Fisherfaces方法、F-S方法和J-Y方法。 相似文献
3.
4.
传统的特征抽取算法是基于向量的,在模式是图像时并不方便。二维投影方法利用图像矩阵直接计算,虽然抽取特征速度快,但抽取出的特征是矩阵,对应的特征数量大,影响分类速度。该文结合二者的优点,先用二维投影处理原始图像,降维后再做主分量分析,抽取出少量的特征进行分类,识别率和分类速度均有提高。在ORL人脸库上20次实验的平均识别率达95.83%。 相似文献
5.
提出了一种基于分类性能的二维主分量特征选择方法.即将二维主分量分析中图像总体散布矩阵的特征向量在二维线性鉴别分析的目标函数上进行投影,并选择分类性更好的特征向量进行投影.另外,为了保持原有的二维主分量分析主特征的优点,对最后的投影特征向量进行组合,也就是最后的投影特征向量选取对图像重建和图像分类分别起着重要作用的特征进行组合.在XM2VTS标准人脸库上的试验结果表明,所提出的方法融合了两种具有互补性的图像并行特征,在识别性能上优于传统的二维主分量分析方法. 相似文献
6.
张博 《数字社区&智能家居》2009,5(1):186-188
二维投影利用表示图像的矩阵直接抽取特征.计算量主要与图像的大小有关,能适用于大类别的人脸识别。针对二维投影抽取出的特征是矩阵,存在特征之间的冗余度大、特征数量多、不利于存储和分类等弱点,该文通过二维投影后的样本再作一次向量形式的特征抽取办法进一步降低二维投影抽取出的特征数量,并缩短了特征识别时间。计算机仿真研究验证了所提出方法的正确性。 相似文献
7.
提出了一种将局部特征加权与二维主成分分析相结合的局部加权的二维主成分分析方法.引入了二维局部加权特征子空间的概念,将各类样本映射到这个局部加权特征子空间,再通过计算测试样本到加权子空间的距离进行样本的分类.使用这种方法在ORL人脸库上进行测试,结果表明,经过局部特征加权的二维主成分分析方法比普通的二维主成分分析方法具有更优的性能,并且在提高识别率的同时算法的复杂程度并没有明显增加. 相似文献
8.
二维主成分分析方法的推广及其在人脸识别中的应用 总被引:7,自引:2,他引:7
提出了分块二维主成分分析(分块2DPCA)的人脸识别方法。分块2DPCA方法先对图像矩阵进行分块,对分块得到的子图像矩阵直接进行鉴别分析。其特点是:能方便地降低鉴别特征的维数;可以完全避免使用矩阵的奇异值分解,特征抽取方便;与2DPCA方法相比,使用低维的鉴别特征矩阵,而达到较高(至少是不低)的正确识别率。此外,2DPCA是分块2DPCA的特例。在ORL和NUST603人脸库上的试验结果表明,所提出的方法在识别性能上优于2DPCA方法。 相似文献
9.
传统的主分量分析方法(PCA)是最为经典的图像特征抽取方法之一,由于其本质上是在最小均方差意义下给出了模式样本的最优表示,所以它通常被作为对高维图像模式进行降维的一种常用方法.但就模式分类而言,这种表示并非是最有效的.首先从统计相关性的角度揭示了PCA抽取的特征本身就具有统计不相关的良好特性.然后通过引入一种新的最大散度差类别可分性判据,从而为在PCA抽取的特征中最优鉴别特征的选取提供了一种有效策略.最后,在AR标准人脸库上的实验结果验证了算法的有效性. 相似文献
10.
2维特征抽取方法(如2DPCA、2DLDA),因为其抽取特征的速度和识别率要比1维的方法好,所以在人脸识别中得到了广泛的应用。最近基于2DPCA又提出了对角主成份分析(diagonal principal component analysis,DiaPCA),该方法由于保持了图像的行变化和图像的列变化之间的相关性,从而克服了2DPCA仅能反映图像行之间的变化,而忽略了图像列之间变化的缺点。但是,由于DiaPCA并没在特征抽取中融入鉴别信息,同时2DLDA也具有与2DPCA同样的缺点,从而分别影响了DiaPCA与2DLDA两种方法的识别性能。针对这一问题,提出了一种对角线性鉴别分析(diagonal linear dicriminant analysis,DiaLDA)的新算法,该新算法是基于对角人脸图像来求解最优鉴别向量。该新算法在ORL和FERET人脸库进行了实验,并与PCA、Fisherface、DiaPCA、2DLDA等方法进行了比较。实验结果表明,该方法比其他方法的识别性能要好。 相似文献
11.
12.
13.
本文介绍了PCA的原理,并利用了PCA方法完成了人脸的特征提取和人脸检测。 相似文献
14.
分块PCA鉴别特征抽取能力的分析研究 总被引:2,自引:1,他引:2
基于主成分分析(Principal Component Analysis,PCA),本文提出了分块 PCA 人脸识别方法。分块 PCA 从模式的原始数字图像出发,先对图像进行分块,对分块得到的子图像矩阵采用 PCA 方法进行特征抽取,从而实现模式的分类。新方法的特点是能有效地抽取图像的局部特征,正是这些特征使此类模式区别于彼类。在 Yale 人脸数据库上测试了该方法的鉴别能力。实验的结果表明,分块 PCA 在识别性能上优于通常的 PCA 方法,也优于基于 Fisher 鉴别准则的鉴别分析方法:Fisherfaces 方法、F-S 方法、组合鉴别方法,识别率可以达到100%。 相似文献
15.
基于MW(2D)~2 PCA的单训练样本人脸识别 总被引:2,自引:0,他引:2
传统的人脸识别方法在单训练样本条件下性能会急剧下降,因此,研究出适合于单样本情况下的识别算法是人脸识别问题面临的巨大挑战.针对两个方向的二维主成分分析((2D)~2PCA)算法进行改进,文中提出将加权和分块与(2D)~2PCA相结合的方法称为分块加权(2D)~2PCA,以便更有效地提取人脸的局部特征.同时把模糊理论引入分类决策,应用于单训练样本人脸识别问题.在ORL人脸库以及部分CAS-PEAL人脸库中的实验结果表明,文中方法能取得较好的识别效果. 相似文献
16.
本文运用主成份分析法对铸造零件表面缺陷数字图像进行特征提取,提出了简化零件表面质量自动检测计算量的新方法,具体地阐述了主成份分析法的原理、计算方法、数字图像分割、特征提取,并通过实例分析进行优化参数选取,具有实际应用价值。 相似文献
17.
虹膜特征提取是虹膜识别的一个关键环节。文中提出一种毯子维和缺项相结合的虹膜特征提取算法。利用虹膜纹理的自相似和丰富的变化细节所具有的分形几何特性,采用纵向扩展毯子维表达不同分辨能力下虹膜纹理的变化及其辐射排列特点。通过引入缺项进一步提取不同纹理和分形表现却具有相同分形维数的虹膜特征。两者的结合能够更加全面地反映虹膜纹理的细腻变化。将归一化虹膜图像灰度值的毯子维及缺项用于虹膜分类,提高对虹膜的分类能力。针对CASIA-IrisV3-Interval数据库的仿真结果表明,纵向扩展毯子维结合缺项能够有效、快速提取虹膜的纹理信息,所获得的特征具有高的虹膜识别性能。 相似文献
18.
黄诚 《电脑编程技巧与维护》2012,4(4):88-89,91
对人脸图像进行离散小波变换来消除部分对识别无关的信息,以提高识别率并有效降低时间复杂度.同时为了抑制光照等外界条件的负面影响,还引入一种对图像灰度进行指数衰减的预处理策略,对预处理后的人脸图像采用二维主成分分析方法进行人脸识别.在YALE和ORL人脸库上试验表明,结合图像预处理的二维主成分分析(2DPCA)方法有着比PCA以及2DPCA更好的识别效果. 相似文献