首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
为了研究不同工况对截齿截割含夹矸煤岩的磨损深度影响规律,建立截齿-夹矸煤岩耦合的有限元模型,模拟含夹矸煤岩截齿截割过程,探究截齿应力分布、温度分布与磨损深度的关联程度,采用正交试验法分析转速、牵引速度和安装角对截齿磨损深度的影响规律。研究结果表明:在模拟试验参数范围内,截齿应力分布和温度分布影响截齿磨损深度的大小,且截齿应力、温度与截齿磨损深度呈正相关性;相比于不含夹矸煤岩,含夹矸煤岩截齿应力、温度和磨损深度更大;随着截齿牵引速度的增加,截齿齿尖前刀面磨损深度呈增大趋势;随着截齿转速的增加,截齿齿尖前刀面磨损深度呈减小趋势;随着安装角的增大,磨损深度呈先减小后增大的趋势。研究结果可以有效提高采煤机截割性能及效率。  相似文献   

2.
截割参数对镐型截齿截割比能耗的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
王想  王清峰  梁运培 《煤炭学报》2018,43(2):563-570
为了研究相关截割参数对截割比能耗的影响,基于直线截割试验装置,在不同截割角条件下,使用5种不同锥角的镐形截齿对一种砂岩进行截割试验,研究了相关角度参数对截割力和比能耗的影响;在截割角为55°时,使用锥角80°的截齿,在不同截割厚度和截线距条件下进行截割试验,探讨了截割厚度和截线距对截割力和截割比能耗的影响。试验结果表明,清理角对截割力和截割比能耗有显著的影响,当清理角过小时,截齿与岩石之间产生严重的摩擦使截割力明显较大,从而使截割比能耗较大。当清理角小于等于10°时,平均截割力随截齿锥角的增大呈线性增大,随前角的增大呈线性减小,此时截割比能耗明显小于清理角大于10°时的截割比能耗,但锥角和前角对截割比能耗未见明显的影响趋势。平均截割力随截割厚度和截线距的增大呈线性增大。截割比能耗随截割厚度的增大呈幂函数减小。截线距与截割厚度的比值存在一个最优值使截割比能耗最小,此时截割比能耗相对无截槽影响时约降低65.1%。截线距与截割厚度比值的最优值为2或3,且该比值不受截割厚度和截线距的影响。这些结论对镐型截齿工作角度的设计及采掘机械工作机构截齿布置有重要的指导意义。  相似文献   

3.
镐型截齿截割煤岩过程的截割力研究   总被引:1,自引:0,他引:1       下载免费PDF全文
刘晋霞  马超  曾庆良  高然  焦志愿 《煤炭学报》2017,42(5):1325-1330
为探究镐型截齿截割煤岩过程中截割力的变化及其影响因素,以Evans镐型截齿直线截割力模型为基础,提出了镐型截齿旋转截割力模型;利用滚筒采煤机镐型截齿截割煤岩轨迹表达式,推导了镐型截齿截割过程中,截割角及截割厚度变化的表达式;在截割参数范围内,计算出镐型截齿截割角在截割过程中最大变化可达±4°;根据镐型截齿旋转截割力模型,在截割厚度一定的条件下,计算并分析截割力与截割角及半锥角的关系,得出当镐型截齿半锥角为36°时,截割力在截割过程中最大截割厚度前后能够保持平稳变化;将截割角及截割厚度变化计入截割过程中计算截割力,发现影响截割厚度主要因素的牵引速度对截割力影响最大,而角速度与截割半径对截割力的影响依次减小。所得公式与结论可为镐型截齿及采煤机的设计提供理论参考。  相似文献   

4.
《煤矿机械》2019,(12):32-35
为研究连采机截齿的截割受力情况,综合考虑煤岩的拉压强度及煤岩之间的黏结度,采用EDEM软件建立了镐形截齿仿真模型,研究了截齿安装角在动态截割煤过程中对连采机截割比能耗及截割阻力的影响规律。结果表明:截割阻力随着截齿安装角的增大变化幅值不同,安装角从35°~45°时变化幅值较小,45°~50°时截割阻力急剧增大;截割比能耗随安装角的增大呈现先减小后趋于平稳的趋势。综合考虑,当截齿安装角为45°时,截割比能耗和截割阻力最小,研究结果为提高连采机的截割效率、减少截齿的损耗提供了参考依据。  相似文献   

5.
刘春生  王庆华  李德根 《煤炭学报》2015,40(11):2623-2628
为给出镐型截齿的截割性能的评价方法,应用分形理论分析旋转截割实验台所测得的截割阻力谱,探究截割阻力谱的分形特征与安装角及切削厚度的关系。基于实验测得的轴向阻力谱和功率谱建立镐型截齿的比能耗与安装角和切削厚度的关系模型。结果表明:在实验条件下,截割阻力谱盒维数和比例系数与安装角均呈二次函数关系,与切削厚度呈指数关系;截割比能耗与截齿半锥角和安装角三者互相制约。半锥角增大时,使比能耗减小的最佳安装角区间变小;半锥角减小时,使比能耗减小的最佳安装角区间变大;半锥角一定时,截割比能耗与安装角呈二次函数关系,随着安装角的增大先增大后减小,存在使截割比能耗最小的最佳安装角;截齿比能耗与切削厚度成指数关系,随着切削厚度增大而减小。该研究证明分形特征与比能耗在评价截割性能上的一致性,为采煤机高效截割与性能的评价提供参考。  相似文献   

6.
不同齿身锥度和合金头直径截齿的截割试验   总被引:2,自引:0,他引:2       下载免费PDF全文
为研究不同截齿的截割性能,研制了5种不同形状的截齿;并在自制的截割试验台上对5种截齿进行试验,分析了不同截齿截割产生的采煤机滚筒扭矩的最大值、最小值、均值、方差等参数;对截落煤岩的块度进行分级处理,研究不同截齿截割块煤率的大小以及截落煤岩的块度分布规律.分析结果表明:不同形状的截齿,随着截齿合金头直径、齿身锥度的变化,其截割力、块煤率的变化是不同的.阶梯型截齿随着齿尖合金头直径减小、齿身锥度增大,其截割力减小、载荷波动增大、块煤率下降;齿身锥度、合金头大小与截齿截割力的关系服从指数分布,截割煤岩的块度也服从指数分布.对于锥型截齿,当齿身锥度较大、合金头较小时,其截割力较小、载荷波动较小、块煤率较大.  相似文献   

7.
为研究含夹矸煤岩截齿安装角度对截割力影响,运用Pro/E构建镐型截齿和含夹矸煤岩的三维模型,采用ABAQUS有限元软件对截齿截割含夹矸煤岩动态过程进行数值模拟,分析不同截齿安装角度下的应力云图与载荷曲线。结果表明:截齿最大截割力出现在最大切削厚度处附近,改变截齿安装角度,对截齿截割力影响较小;随着截齿安装角的增大,截割力均值和截割力峰值均值呈现先减小后增大的趋势。随牵引速度增大,截齿截割力均值、截割力峰值均值呈增加趋势,该研究为调整截齿安装角来提高截齿破碎性能奠定基础。  相似文献   

8.
《煤矿机械》2021,42(6):110-113
为研究采煤机截齿不同安装角度下单齿截割煤壁的截割力特征,以MG650/1620-WD型采煤机为研究对象,运用LS-DYNA建立仿真模型。研究单截齿冲击角和倾斜角与滚筒截齿截割特性的关系,模拟不同冲击角和倾斜角截齿截割过程,研究截齿冲击角和倾斜角对单齿截割力以及截割平稳性的影响。利用MATLAB分别拟合冲击角和倾斜角与截割力的曲线方程,并利用曲面拟合的方法得到冲击角与倾斜角的最佳匹配值。结果表明:随着截齿冲击角和倾斜角增大,单齿截割阻力呈先减小后增大的趋势;当冲击角为45°、倾斜角为8°时,单齿截割的平稳性较好,截割力平均值较小。  相似文献   

9.
王立平  蒋斌松  张翼  张强 《煤炭学报》2016,41(9):2367-2372
为了能对镐型截齿在平面截割截槽对称条件下的峰值截割力进行较为准确的预测,基于Evans的截割模型,通过分析截割时齿头的锥形表面因岩石的夹制效应而接触应力分布有所不同,理论推导出了一个新的峰值截割力计算公式以及公式应满足的截割边界条件。相比现有其他截割力计算公式,除了考虑截齿半锥角θ、煤岩抗拉强度σt及齿岩之间摩擦因数f等参数的影响,且将煤岩的脆性指数m引入其中,计算结果与试验值更为接近。公式所应满足的截割边界条件,可用截深h和加载位置与相邻自由边界垂直距离s比值的最低限值smin/h表示,且值大小受截齿半锥角θ影响较小,而主要与煤岩脆性指数m有关,当m介于5~15时,smin/h介于2~3,符合既有试验所得结果。所得公式和结论可为进一步分析和推导镐型截齿在实际采掘条件下包含更多参数的峰值截割力提供理论基础和指导。  相似文献   

10.
为了优化掘进机截割头设计,进一步提高破岩效率与巷道掘进速度,用数值仿真模型研究了不同裂隙位置对截齿截割岩石的影响及截割力变化规律.结果表明:与均质岩石相比,截割含裂隙岩石的进给阻力较小;随着裂隙区域与齿间距离的增大,截割阻力会逐渐增大,同时截割阻力的峰值平均力也呈增大趋势;统计了不同裂隙位置的截割比能耗,发现当裂隙与齿...  相似文献   

11.
为了分析纵轴式掘进机截割头截齿的运动学特征,建立了总体坐标系和局部坐标系,在此坐标系下建立了截割头纵向钻进、垂直摆动、横向摆动3种工况的截齿运动学数学模型,并进行了计算机仿真;由仿真可知,截齿在截割头上的回转半径对截齿运动学参数影响最大,回转半径越大截齿的速度和加速度越大并且变化率较大;其次,截割头转速对各运动学参数的大小和波动性也有明显的影响,随着截割臂摆动角速度的增大,截齿的速度会出现波动,并且加速度会出现较大的峰值。  相似文献   

12.
为探求镐型截齿载荷反演定量求解的方法,利用多截齿参数可调式旋转截割实验台,对不同楔入角镐型截齿的载荷进行关联分析。采用修正离散正则化方法,根据镐型截齿实验载荷谱及其结构和运动参数,重构其载荷谱,提取载荷谱特征参量,给出不同楔入角载荷谱的拓扑关系及推演算法。结果表明:楔入角在35°~50°以及楔入角和齿尖半锥角之和小于90°时,给出了实验截割载荷随楔入角的增大呈现出极值性的变化规律。重构40°和45°楔入角截齿载荷谱的特征值易辨识和提取,其截割能量主要处在1~4 Hz,二者均值关系为F40°≈1.2F45°,幅值之间具有正相关性,其相关系数r=0.976 7。其推演和重构载荷的特征值与实验最大值误差分别为1.5%,9.8%,均值误差分别为5.5%,1.6%,二者具有较高的吻合度。  相似文献   

13.
本文以镐形截齿为例分析了截齿截割煤岩体的过程以及截割过程中截齿的受力情况。从截齿的磨损、截齿安装角度、截割厚度和截割速度角度分析影响截割性能的因素,发现合适的截齿安装角度、合理的截割厚度和截割深度是影响破岩效率的关键因素,较大的截割速度虽然会提高生产效率,但会加大截割阻力,加快截齿磨损。  相似文献   

14.
以采煤机滚筒端盘截齿为研究对象,应用非线性仿真软件ABAQUS建立端盘截齿与煤岩的刚柔耦合模型,利用模型的动态仿真过程,研究了截齿载荷随3种轴向倾斜角和二次旋转角不同的变化规律。研究表明:截齿截割瞬间,截割阻力随着轴向倾斜角和二次旋转角的增大而增加,牵引阻力和侧向阻力变化平稳。  相似文献   

15.
《煤炭技术》2016,(7):250-251
针对掘进机工作时截齿磨损严重,造成大量经济损失的实际,为了探究影响截齿磨损的因素,利用ABAQUS软件的显式动力分析模块对掘进机用镐形截齿的截煤过程进行了数值模拟,得到了不同合金头锥角镐形截齿在截割煤体过程中的应力分布云图以及截割全过程的应力曲线。  相似文献   

16.
李锐 《煤炭技术》2024,(1):249-251
分析了采煤机截割实际情况,确定了截割半径、牵引速度、滚筒转速、煤层介质等截割影响参数;运用仿真和试验的方法研究了采煤机截齿在实际工况下作业时受力情况。仿真和试验结果表明:不同截割参数下,采煤机截齿截割力均呈现先增加后减小的趋势;不同截割参数下,截齿截割力峰值不同;采煤机截齿截割力试验值与仿真值基本一致,且最大相对误差为5%,试验验证仿真分析准确性,该研究为采煤机截齿受力特性的改善和疲劳寿命的提高提供借鉴。  相似文献   

17.
为实现采煤机截割过程中煤岩界面的精准识别,选取截割过程中截齿的振动信号和红外热像信号作为煤岩识别的特征信号,针对截割过程中截齿x、y、z三个方向的振动加速度信号、振动频谱图、齿尖红外闪温值和温度-频数图像进行实时采集,研究截齿振动信号、红外热像信号与不同煤岩比例试件之间的变化规律。研究结果表明:随着试件中岩石比例的增大,截齿振动加速度均值逐渐上升,频谱图对应的均方根值逐渐增大;截割试件过程中截齿齿尖产生点状闪温区,截割全岩试件时最高闪温值与高温区范围远大于截割全煤试件,温度-频数图像中最高温度所对应的频数逐渐上升。BP(Back-Propagation)神经网络的识别结果和测试样本的实际煤岩比例相符,能够对截割试件的煤岩比例进行准确识别,研究结果可为实现煤岩界面的精准识别提供重要的方法和手段。  相似文献   

18.
截齿破碎煤岩过程中的截割力变化规律及岩石损伤对于指导刀具设计、提高煤岩破碎效率具有重要作用。采用ANSYS/LS-Dyna建立了单截齿破碎煤岩的动力学模型,在2 mm、4 mm、6 mm、8 mm、10 mm和12 mm 6种截割深度以及0.5 m/s、1 m/s、2 m/s和3 m/s 4种截割速度下进行数值模拟,分析了在6 mm截深时的截齿破岩过程,分析了截割力随时间的变化过程和平均截割力随截割深度的变化过程,通过损伤区域直径量化了损伤范围。最大截割深度12 mm比最小截割深度2 mm平均截割力大21.6 kN,损伤区域直径大32 mm,最大截割速度3 m/s比最小截割速度0.5 m/s平均截割力大0.9 kN,损伤区域直径小5 mm。截割力随截齿运动先增大后趋于稳定,平均截割力随截深增加显著增加。损伤范围随截深增加先增加后趋于稳定,二者呈指数关系,截割速度对截割力和损伤的影响较小。  相似文献   

19.
采煤机在煤矿生产中应用广泛,采煤机割煤的过程实质上就是截齿截割煤岩的过程。以镐形截齿为例分析了截齿截割煤岩体的过程,以及截割过程中截齿的受力情况。从截齿的磨损、截齿安装角度、截割厚度和截割速度角度方面分析影响截割性能的因素,发现合适的截齿安装角度、合理的截割厚度和截割深度是影响破岩效率的关键因素,较大的截割速度虽然会提高生产效率,但会加大截割阻力,加快截齿磨损。  相似文献   

20.
采煤机截齿与粉尘生成量及灭尘的关系   总被引:1,自引:0,他引:1  
煤矿生产中,采掘机械的工作参数,诸如截深、截齿材料、喷嘴位置和滚筒的转速和直径、截齿的截深、煤层中的含矸量及矸石的强度特性以及煤层的开采条件对截齿的磨损有很大影响,其中截割深度对磨损尤为重要。截割深度越大,散热越慢,当截齿温度超过它的临界温度时,截齿磨损会显著增加,截齿温度也随滚筒转速、岩石特性、煤层的属性及截齿自身的变化而变化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号