首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
选用3种电位梯度分别对东曲矿贫煤进行电化学改性实验,对改性前后的煤样进行瓦斯吸附解吸测试,并通过低温液氮吸附测试和红外光谱测试分析改性前后煤样孔隙结构和表面基团的变化。结果表明:未改性贫煤煤样的饱和吸附量为30.030 mL/g,煤样的Langmuir压力为0.876 MPa,最终解吸率为83.204%,经1、2、4 V/cm 3种电位梯度电化学改性后,煤样的饱和吸附量分别降低为29.239、28.329、26.667 mL/g;Langmuir压力分别升高为0.932、1.042、1.048 MPa;最终解吸率分别提高84.235%、85.541%和87.840%;电位梯度越大,改性后煤样的比表面积越小,平均孔径越大,含氧官能团数量越多,故抑制瓦斯吸附、强化瓦斯解吸的效果越好。  相似文献   

2.
为研究煤体表面酸液改性对瓦斯吸附特性的影响,通过酸液浸泡方式对煤样进行改性。采用等温吸附仪对各改性煤样瓦斯吸附规律开展实验研究,并利用高压压汞仪测试各煤样的孔隙结构特征。研究结果表明:酸液改性对煤体孔隙结构有显著影响,酸化作用能够打通煤体内部孔隙,煤样经酸液浸泡后其吸附孔数量减少,中孔和大孔数量增加;随着酸液浸泡时间的增加,煤体瓦斯吸附能力曲线呈现先快后慢的非线性变化;酸液作用下,煤体瓦斯吸附能力减小,吸附速率降低。  相似文献   

3.
《煤矿安全》2016,(2):9-13
在系统采集西南地区典型矿井构造煤样的基础上,通过等温吸附解吸实验,探讨了不同变质变形条件下构造煤瓦斯特性。中高变质作用阶段,变质程度对瓦斯吸附的影响作用大于变形强度,无论变形强弱,低变质煤的吸附量均低于中高变质煤;在低阶煤阶段,影响甲烷吸附量的主控因素则为构造煤变形强度。解吸较好的样品主要为高变质或高变形构造煤,瓦斯解吸量和解吸应力敏感性符合文特式。瓦斯解吸初期应力敏感性强弱为:高变质弱变形煤中变质煤及高变质强变形煤低变质煤。  相似文献   

4.
《煤矿安全》2017,(12):16-20
为了研究浸水风干煤样瓦斯吸附解吸规律,选择未浸水的原煤样和浸水3、15、30 d风干煤样进行恒温动态瓦斯吸附解吸实验,得到瓦斯累积吸附解吸量随时间变化的实测曲线。对所选煤样进行比表面积及孔径分析,得到其比表面积、孔容和孔径分布。结果表明:浸水风干煤样瓦斯累积吸附量随压力变化的趋势与原煤样一致;浸水风干煤样解吸初始20 min内解吸量倒数与时间函数成线性关系;浸水时间增加,风干煤样的饱和吸附量、比表面积、总孔容、微孔孔容先减小后增大,平均孔径先增大后减小。  相似文献   

5.
《煤炭技术》2016,(9):173-175
专门针对瓦斯解吸及吸附作用与煤岩形变的相关性做出实验认证,条件是恒压恒温,利用物理上的排水法间接获得瓦斯体积,又由于解吸量与吸附量是一对互逆过程,那么即可利用回归分析便能够算出朗格缪尔体积常数a以及压力常数b,进而把所获得数据进行拟合分析,得到了体积变化与解吸量的关系式,最终分析出瓦斯解吸及吸附作用和煤岩体积形变的定量关系。  相似文献   

6.
在交变电场声场作用下煤解吸吸附瓦斯特性分析   总被引:4,自引:0,他引:4  
在交变电场、声场作用下对煤解吸、吸附瓦斯特性进行了实验研究。得出在交变电场作用下,煤样吸附甲烷的量能很好地遵从Langmuir方程。随交变电场电压增大,吸附常数a变化不大,而吸附常数b却逐渐减小。交变电场的作用减弱了煤的吸附能力和解吸能力,减缓了含甲烷煤的解吸过程。声场的作用使煤的吸附量明显减少,吸附能力降低,且煤的瓦斯吸附量随声强增大而减小。  相似文献   

7.
针对煤瓦斯的储集运移特性,提出了通过电化学强化煤瓦斯解吸渗透性以提高煤层瓦斯抽放率和抽放效果的研究思路。对电磁场和地电场强化煤瓦斯解吸渗透机理进行了分析,提出了电化学强化煤瓦斯解吸渗透的研究方法,并对其可行性进行了分析,为实现电化学强化煤瓦斯解吸渗透提供基础理论依据。  相似文献   

8.
煤中可溶有机质对瓦斯吸附与解吸特性的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
为了研究煤中可溶有机质对瓦斯吸附与解吸特性的影响,在常温、常压下,用四氢呋喃抽提了淮北矿区的青东8煤、许疃3煤和孙疃8煤中的有机质,对比分析了原煤和残煤的瓦斯吸附量,常压真空解吸量和放散初速度Δp的变化规律。结果表明:抽提后,青东8煤和许疃3煤瓦斯吸附量减少,抽提前后瓦斯吸附增量随压力增加先增大后减小,Δp减小;孙疃8煤瓦斯吸附量无明显变化,Δp增大;3种煤样的常压真空瓦斯解吸量均增大。分析认为:突出煤层中,瓦斯溶解于煤中可溶有机质,形成固溶体,增加了煤层瓦斯含量,提高了瓦斯放散速度,煤层突出危险性增大;非突出煤层中可溶有机质占据了部分孔隙,可减缓瓦斯释放,降低瓦斯释放速度。  相似文献   

9.
CO常作为有效标志气体用于煤自燃预报预警,采空区自燃封闭后CO迅速降低甚至消失的致因尚不明晰,影响煤自燃程度的精准判定。为深入研究煤体对CO气体的吸附/解吸特征,采用压汞和液态氮气吸附实验,测试研究煤样孔隙结构;利用自主研发的气体吸附/解吸装置,在303.15~333.15 K与0.15~0.50 MPa条件下,探索不同粒度煤样对CO气体吸附/解吸特性的影响,并深入分析CO的吸附速率和解吸滞后效应。结果表明:灵新矿不黏煤煤样的孔容以大孔和过渡孔为主,分别占33.02%和38.26%;孔比表面积以微孔和过渡孔为主,共占97.73%。粒径减小,微孔孔容与孔比表面积所占比例增加,过渡孔和中孔的孔容与孔比表面积所占比例减小,不同粒径煤样对CO气体吸附量与压力成正比;压力一定时,CO吸附量与温度成反比;同温同压条件下,煤样粒径越小,CO吸附量越大;相同温度下,煤对CO饱和吸附量与粒径呈正相关关系,CO解析过程中,粒径减小,饱和吸附量a值增大;煤样对CO吸附速率可划分为3个阶段:0~750 s为快速上升期、750~2 250 s为缓慢上升期、2 250~3 600 s为饱和平衡期;不同粒径煤样CO...  相似文献   

10.
通过实验对煤的瓦斯放散特性与瓦斯吸附解吸性进行了初步研究,研究发现吸附量及压力与吸附时间均呈现对数函数关系,且有较高的拟合度。通过对吸附解吸实验数据分析计算出瓦斯放散初速度与实验测得值具有较好的吻合性,从而为瓦斯放散初速度测定提供另一种科学有效的途径。  相似文献   

11.
金兵 《煤矿安全》2019,(4):10-13
通过改进的煤样瓦斯解吸装置,精确测定了不同平衡压力下构造煤与原生煤的恒温瓦斯解吸量与解吸速度数据,分析了构造煤的瓦斯解吸特征。实验结果表明:构造煤的瓦斯解吸量具有明显的分段特征,其初期瓦斯解吸量更大,第1 min内瓦斯解吸量可达120 min总解吸量的31.55%~38.07%,远高于同条件原生煤的10.94%~14.24%;构造煤的初始解吸速度可达10.11~15.75 mL/(g·min),是同条件下原生煤的的1.72~2.32倍,构造煤的初期解吸特征主要由第1 min内的解吸特性控制。通过现场数据分析了钻屑瓦斯解吸指标K_1随构造煤平均厚度变化情况,两者呈线性关系且显著正相关,说明在构造煤发育区域煤与瓦斯突出危险性显著增加。  相似文献   

12.
13.
《煤炭技术》2015,(8):156-158
为了研究煤的孔隙分布规律对其吸附解吸特征的影响,对干燥煤样进行了压汞实验和等温吸附解吸实验。结果表明,煤的吸附解吸过程具有不可逆性和解吸过程的滞后性,滞后的主要原因是实验煤样孔径为100 nm以下的孔隙比较发育,容易形成毛细凝聚;煤样中孔隙的比表面积主要被过渡孔和微孔所占据,微孔的比表面积占总表面积比例分别为68.82%和72.96%,这决定了煤的吸附能力。  相似文献   

14.
煤层瓦斯解吸影响因素的试验研究   总被引:2,自引:0,他引:2  
为了研究煤层瓦斯解吸影响因素,选用屯留矿的贫煤,设计了不同含水率下的含瓦斯块煤在自然状态下和高压注水之后的常温解吸和升温强化解吸试验.采用自制的吸附-解吸-注水成套试验设备,分4个阶段对煤样进行反复的吸附和解吸,将试验结果进行对比分析.结果表明:煤对瓦斯的吸附和解吸不是完全可逆的2个过程,含水率是0和1%的煤样在常温自然状态下的解吸率分别是62.3%和67.9%,水对瓦斯的解吸影响较大;在高压注水之后,含水率为0和1%的煤样在常温自然状态下的解吸率分别为11.5%和27.5%;升温可以促使残余瓦斯的解吸,50℃时含水率为0和1%的未注水煤样,解吸率分别是常温下的1.5和1.4倍,注水后的解吸率分别是常温下的2.5和1.7倍.  相似文献   

15.
为探究脉冲超声对煤体孔隙结构及瓦斯解吸特性的影响,利用全自动压汞仪和自主研发的脉冲超声激励煤吸附解吸瓦斯实验系统,分析不同脉冲次数超声激励前后煤体孔容、比表面积及瓦斯解吸量变化,研究脉冲超声激励对煤体孔隙结构特征及瓦斯解吸的影响。实验结果表明:随着脉冲超声次数增加,中大孔孔隙连通程度明显增大,微小孔孔隙连通程度无显著变化,仍以半封闭孔和封闭孔为主;各孔径段孔容和比表面积均有所增加,其中中大孔孔容与微小孔比表面积增加最为显著;脉冲超声激励后的煤体具有明显分形特征,且分形维数随脉冲次数的增加呈下降趋势;脉冲次数增加,煤体瓦斯解吸量增多,解吸速率加快,且最大解吸量、最大解吸速率与脉冲次数均呈线性正相关关系。实验表明脉冲超声使煤体原生孔隙得到有效改善,孔隙之间相互连通,促进了瓦斯解吸。  相似文献   

16.
《煤炭技术》2021,40(9):126-130
为了研究构造煤的孔隙结构对瓦斯解吸特征的影响,选取了发耳煤矿和青龙煤矿的煤样,进行了压汞试验和瓦斯解吸试验,对构造煤和原生结构煤的孔隙结构及解吸特征进行了对比分析,结果表明:原生结构煤中的大孔和中孔的孔容含量约占总孔容的12.81%~12.19%,构造煤中的大孔和中孔的孔容含量约占总孔容的69.85%~82.15%,原生结构煤和构造煤的孔比表面积占比较高的都是微孔和小孔,表明构造煤结构变化主要体现在大孔和中孔的孔容占比增加;构造煤的初期瓦斯解吸速度和瓦斯解吸量明显大于原生结构煤,主要原因是构造煤的大孔和中孔的孔容含量增加,使瓦斯有了更多的渗流通道和储存空间,增加了瓦斯解吸速度。  相似文献   

17.
煤的孔隙结构是影响瓦斯储存和运移的重要因素。为了进一步研究中低变质程度煤瓦斯解吸特性,选取6组阜康矿区煤样进行压汞试验和瓦斯解吸试验。通过绘制进退汞曲线、统计各孔径段孔隙结构特征以及绘制瓦斯解吸曲线,着重分析了煤的孔隙形态、孔容、孔比表面积和体积分形维数及其对瓦斯解吸量及解吸速率的影响。结果表明:试验煤样均存在不同比例的开放孔,大孔主要以开放孔为主,中孔和小孔主要以半封闭孔为主,微孔主要以封闭孔为主;煤样孔容以微孔和大孔贡献为主,比表面积以微孔贡献为主。通过绘制瓦斯解吸曲线和解吸速率散点图,发现瓦斯解吸量随解吸时间先快速增加后趋于稳定值,进而拟合发现,中低阶煤瓦斯解吸曲线可采用1/Q=m/t0.75+n表示,拟合度在0.995以上,其中参数m为与瓦斯解吸速率相关的参数,参数n为解吸体积常数,系数0.75可能与煤变质程度有关,后期可对不同变质程度的煤样解吸曲线进行分析,解吸速率随解吸时间呈指数式递减。将不同孔径段孔隙结构特征与解吸特性参数拟合发现,在瓦斯解吸初期,大孔中的瓦斯优先被解吸,随着孔径的减小,优先率逐渐降低。中大孔分形维数介于2.879 1~2.991 5...  相似文献   

18.
为研究不同软硬煤瓦斯吸附特性,以山西古交矿区东曲矿为研究对象,针对2组不同变质程度的软硬煤,通过高压容量法测试了其瓦斯吸附性能;同时对不同软硬煤开展了低温液氮吸附实验,分析了其孔隙结构特征,从煤体微结构层面揭示了不同软硬煤的瓦斯吸附控制机理。研究结果表明:不同软硬煤之间存在较大的吸附差异性,瓦斯吸附参数VL最大值是最小值的1.5倍;在不同软硬煤中,微孔所占比例均大于50%,煤中的孔比表面积主要由小于10 nm的微孔所贡献;构造变形作用使得煤层中的原生孔隙裂隙系统被破坏,孔隙直径减小,微孔比例增加,孔隙比表面积也在不断增大,因而,软煤较硬煤拥有更强的吸附性能。  相似文献   

19.
为了研究煤的非均匀势阱分布及其对甲烷吸附/解吸过程的影响,在吸附科学和分子动力学理论基础上建立了非均匀势阱模型。该模型可以表征煤的吸附/解吸性能以及精确计算出煤体内不同势阱所对应的势阱数量。为了验证非均匀势阱模型对煤的吸附/解吸性能方面的表征能力的准确性,将其与Langmuir模型分别对甲烷吸附/解吸过程进行拟合,再将拟合数据和等温吸附线的相关系数分别进行比较。结果表明,非均匀势阱模型在表征煤体的吸附/解吸性能方面更优。在研究煤体内的势阱分布时,发现煤在不同温度压力下对甲烷的吸附/解吸过程中,煤体内的势阱分布出现明显差异。在分析煤的势阱规律时,发现在吸附阶段煤体内的势阱数量比解吸阶段多,但解吸过程中煤的平均势阱深度比吸附过程大。并且平均势阱深度随着煤阶的降低而降低。在吸附阶段势阱数量集中在某个势阱深度的范围内,但在解吸阶段势阱数量的分布相较而言就更分散。在同一温度下,势阱数量随着煤阶的降低而减少。从势阱分布来看,在相同温度下,高煤阶煤的势阱分布方差明显比低煤阶煤的势阱分布方差要大得多。温度上升会使得平均势阱深度随着温度的升高而下降。对于同一煤阶而言,温度的变化对5~15 kJ/mol内...  相似文献   

20.
为了从微观的角度探究瓦斯压力对深部低透性煤层吸附-解吸特性及孔隙分布的影响,采用低磁场核磁共振技术(NMR),开展深部低透性煤不同瓦斯压力下的吸附-解吸试验。试验发现:瓦斯吸附态、游离态和自由态下,T2谱幅值积分与瓦斯压力呈现较好的线性关系,其拟合结果R2均大于0.973 48,微观自由态瓦斯在瓦斯压力等于3.739 MPa处瓦斯的吸附-解吸出现了迟滞效应。不同瓦斯压力下,孔径类型分布差距较大,煤样内部孔隙分布主要是小孔占据大部分,而中孔和大孔所占比列较小。研究结果对深部低透性煤矿资源开采具有一定的指导意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号