首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 281 毫秒
1.
高瓦斯矿井易自燃煤层,工作面受上隅角瓦斯超限与采空区遗煤自燃双重威胁。为解决高抽巷抽采瓦斯导致采空区氧化带面积变大、增大遗煤自燃危险性的问题,以顶板长钻孔替代高抽巷,配合进风巷侧注氮,通过对长钻孔参数与注氮参数的优化,进行防火与控瓦斯耦合治理的研究。以中兴煤业1401工作面实测数据结合ANSYS数值模拟,研究了长钻孔数量、位置对工作面上隅角瓦斯的影响规律,获得以5个直径300mm、距回风巷10m、距煤层底板15m的顶板长钻孔替代高抽巷的最优方案。在此基础上,为保障对采空区遗煤自燃的有效控制,研究了注氮量与注氮位置对采空区氧化带分布的影响规律,获得在进风巷侧氧化带与散热带分界位置注入5.5m3/min的氮气,将采空区氧化带宽度降至25m的优选结果。通过对上隅角瓦斯与采空区遗煤自燃的综合控制,保证了工作面的安全生产。  相似文献   

2.
注氮条件下瓦斯抽采对采空区自燃“三带”的影响   总被引:1,自引:0,他引:1  
为了解决高抽巷抽采引起采空区漏风量增加导致采空区遗煤自燃倾向增大的问题,针对正行煤矿1502综放工作面开采具有高瓦斯易自燃的特点,采用现场实测与数值模拟相结合的方法,通过Fluent软件模拟了采空区未采取注氮和抽采措施、高抽巷抽采和注氮条件下高抽巷抽采等3种情况的采空区瓦斯浓度场、漏风场、氧气浓度场的变化情况,得出了采空区自燃"三带"分布范围:散热带0~23 m,氧化带23~69 m,大于69 m为窒息带;将采空区自燃危险性区域确定为23~69 m。根据以上结果,对注氮效果、抽采负压进行评价,完善了采空区在注氮条件下高抽巷抽采防灭火系统。  相似文献   

3.
《煤矿安全》2020,(2):188-191
为研究"两进一回"通风工作面采空区煤自燃区域分布规律,模拟分析了塔山煤矿8301工作面回采期间不同工况下采空区氧气浓度,确定了煤自燃危险区域并提出相应防灭火措施。结果表明:"两进一回"通风工作面采空区煤自燃危险区域较大,自燃带在回采长度为150 m时达到96 m;注氮可大幅度改变采空区内自燃"三带"分布,减小采空区煤自燃危险区域。针对"两进一回"通风工作面,应考虑在采空区两侧注氮;增加风量可使自燃带边界向采空区深部延伸,且加大其前端距工作面的距离。  相似文献   

4.
为了研究高抽巷抽采与不同注氮条件结合下采空区自 燃氧化带的分布变化规律,在高抽巷抽采条件下,设置6种 不同的注氮释放口位置和4种不同注氮量,研究进、回风侧 采空区自燃氧化带的宽度及其距工作面距离的分布变化情 况.结果表明:设置高抽巷可以促使煤自燃氧化带向采空区 内部移动,且氧化带宽度增加;位置点5为最佳注氮释放口 位置,此时进风侧氧化带宽度最窄,距工作面距离最远,回风 侧氧化带宽度较窄且距工作面距离较远;最佳注氮量为360 m3/h,改变注氮量对采空区进风侧的影响大于回风侧,对氧 化带宽度的影响大于对距工作面距离的影响.  相似文献   

5.
王飞  谷晓玲 《煤炭技术》2021,40(2):145-147
为研究高瓦斯综放工作面采顶抽巷治理瓦斯和注氮与遗煤自燃三者的相互影响,寻找最佳的抽放量与注氮流量,进行实验分析;并分析了遗煤自燃抽放、注氮、温度场、O2场、CH4场影响关系图。实验表明:顶抽巷附近20 m范围内随抽放量的增加,O2浓度10%曲线逐渐向采空区延伸,采空区"三带"随之增加。受抽采半径及吸入工作面空气影响,抽放瓦斯纯度出现先增加后降低情形。随着注氮量的增加,进风侧"三带"变化浮动明显,并且对顶抽巷附近"三带"宽度也有所降低。"三带"降低率先增加后降低。81505工作面抽放量700 m3/min,注氮量2 200 m3/h时,有利于采空区防灭火。该研究为综放工作面采空区遗煤自燃治理提供参考。  相似文献   

6.
针对斜沟煤矿8#煤为低渗透性自燃煤层难以施工预抽瓦斯钻孔、采空区瓦斯治理难度大的现状,提出采用上隅角浅部埋管抽采与筛管注氮耦合治理技术以防治瓦斯与火共生灾害。利用COMSOL软件数值模拟,研究当抽采量80 m3/h和注氮流量700 m3/h时,采空区自燃"三带"与注氮时间和配风量之间的关系。结果表明,当注氮时间为15 h和配风量为2 000 m3/min时,可以有效消除瓦斯与火共生致灾的危险,保障安全生产。通过现场监测,采用下限8%氧体积分数曲线与上限0.004 m/s漏风风速曲线划分采空区自燃"三带",并绘制自燃"三带"曲线,发现二者基本吻合,模拟结果准确可靠。  相似文献   

7.
为研究地面钻井抽采对采空区煤自燃危险区域的影响,以某矿综采工作面为研究背景,现场利用束管监测系统和SF6示踪气体,测定了采空区遗煤自燃危险区域和采空区漏风情况,并通过数值模拟研究了有无地面钻井情况下采空区自燃危险区域分布和地面钻井不同抽采量对采空区氧气浓度分布的影响。研究结果表明,采空区氧化带最大宽度为72.2 m,计算得出每日最小推进度为1.08 m;通过示踪气体测定风巷测点与地面钻井测点SF6最大浓度之比为8∶1。数值模拟结果显示,地面钻井抽采使得采空区自燃危险区域范围增加,并且随着抽采量的增加,自燃危险区域随之扩大。  相似文献   

8.
郭建行  鲁义 《现代矿业》2012,(11):127-129
为了研究采空区瓦斯与火灾复合灾害共存的情况下,瓦斯抽放对采空区煤自然发火的影响,利用Fluent数值模拟软件,研究高位钻孔抽采方式时采空区瓦斯浓度分布规律,漏风流场及采空区氧化带宽度变化情况。得出高位钻孔抽采时,采空区底板附近漏风流场影响较小,自燃带宽度变化较小,能减少瓦斯与火灾复合灾害的发生,从而为工作面的安全高效回采提供了有效保障。  相似文献   

9.
瓦斯抽放不仅会增大采空区漏风,引起"三带"迁移,加大采空区煤自燃危险性;而且会造成采空区的紊乱及瓦斯积聚,致使采空区遗煤自燃危险区域更加复杂。针对建北矿4204工作面高瓦斯赋存实际情况,通过现场观测,得出采空区浮煤厚度、氧浓度和漏风强度的分布规律,并结合煤自然发火特性参数对采空区进行危险性分析,划分了抽采条件下采空区"三带"范围,确定了采空区自燃危险区域及预防采空区遗煤自燃的工作面安全推进速度。  相似文献   

10.
《煤矿安全》2019,(5):42-46
为了掌握"U+L"型通风工作面自燃危险区域分布情况,更好地协调工作面瓦斯抽采与防灭火工作,采用现场试验的方式对典型工作面进行试验研究。试验在工作面采空区回风侧每隔30 m设置1个束管取样口和1个测温装置,各测点随着工作面的推进,连续测试采空区气体成分及温度数据;通过调整瓦斯抽采方式,测试采空区自燃危险区域分布情况。结果表明:"U+L"型通风配合瓦斯抽采能很好地解决工作面瓦斯超限问题,但会造成严重的采空区漏风;通过取消不合理的瓦斯抽采手段,能够保证工作面瓦斯抽采满足安全生产要求的同时明显缩小采空区自燃危险区域,降低采空区自然发火危险。  相似文献   

11.
相邻工作面开采会导致复杂的漏风情况,浮煤易自燃,增大防火工作的难度。为明确相邻采空区自燃“三带”分布特征及确定最佳注氮防灭火参数,以贵州某矿4244工作面为背景,结合现场实测,应用Fluent流场分析软件,模拟研究不同注氮方案下采空区氧气浓度场分布规律。结果表明,实测结果与模拟相吻合,验证了模拟的可靠性;当注氮位置为X=50 m,注氮流量为100 m3/h时,采空区进、回风巷侧氧化带宽度分别为7 m和38 m,能明显减少本采空区氧化带面积,且能防止氧化带距工作面太近;此工作面进风侧注氮对相邻采空区氧化带影响范围较小,这要求在回采过程中需要对煤柱进行加固,降低孔隙率,控制漏风,减少氧气进入相邻采空区,降低煤自燃风险。模拟结果为相邻采空区灾害防治工作提供了的理论指导。  相似文献   

12.
介绍了同煤集团塔山矿8202综放工作面开采过程中,采用埋管、连续注氮方式向采空区注氮,防止采空区遗煤自燃。同时在采空区预埋束管,测量连续注氮前后各测点氧气和一氧化碳浓度的变化,并结合采空区遗煤自燃理论,得出了采空区自燃“三带”的分布变化。结果表明:综放工作面采空区在连续注氮下,氧气浓度随采空区深度的增加明显降低,最终稳定在5%左右;一氧化碳浓度随采空区深度的增加稳定在50×10 -6以下;注氮量越大,氧气和一氧化碳浓度下降的幅度越大;由于工作面供风量和漏风量都较大,对散热带宽度影响不大,氧化带在注氮后缩短了约60 m,窒息带前移了约70 m。  相似文献   

13.
为研究采煤工作面覆岩两带(冒落带、裂隙带)与自燃三带(散热带、窒息带、氧化带)的关系,通过建立覆岩运移模型,应用CDEM软件模拟分析了试验工作面采动空间上覆岩层两带的扩展过程,分析垂向方向覆岩两带分布对水平方向上垮落煤岩堆积状态的影响情况。通过现场埋管实测的手段以及氧体积分数法进行了采空区煤自燃三带的划分。研究表明,冒落带高度稳定情况下,采煤推进距离(48 m)与采空区散热带和氧化带的分界线(进风侧采空区以里50 m左右,回风侧采空区以里40 m左右)有较好的吻合关系。裂隙带高度稳定情况(顶板150 m处的岩层最大下沉值趋于基本稳定)下,采煤推进距离(126 m)与采空区氧化带和窒息带的分界线有较好的对应关系。  相似文献   

14.
针对新维煤矿8104综采工作面开采煤层含硫量较高且局部富集、采空区遗煤多、距离上层采空区近等客观情况,研究了其采空区煤自燃危险区域分布规律。实施过程中,采用束管监测系统实时测试采空区气体场分布,在此基础上以O2浓度变化作为主要标志、温度变化为辅助标志划分了8104综采工作面采空区的"三带"范围,并采用数值模拟方式与现场实测结果进行了对比分析,结果表明实测与数值模拟结果基本一致。最终确定了该综采工作面采空区自燃带范围:进风侧为40.5~95.5 m,回风侧为15.3~59.7 m。  相似文献   

15.
近距离煤层群开采自燃危险区域划分及自燃预测   总被引:8,自引:0,他引:8       下载免费PDF全文
张辛亥  席光  陈晓坤  邓军  文虎 《煤炭学报》2005,30(6):733-736
通过数值方法求解复合煤层采空区渗流、扩散和化学反应耦合的三维稳态数学模型,得到常温下采空区氧浓度及渗流速度场的分布.结合大型煤自然发火实验得到的煤自燃的下限氧浓度、上限漏风强度、极限浮煤厚度等参数及煤的实验自然发火期,划分出开采下部煤层时上部煤层煤柱及采空区自燃危险区域,再结合工作面推进速度,预测自然发火期.采用这种方法对东荣二矿采煤工作面顶部煤层煤柱进行自燃预测,得到进风侧的煤柱氧化升温区在距离工作面50~140 m处,回风侧在距离工作面50~85 m处,工作面推进速度大于1.6 m/d时,煤柱无自燃危险,工作面停止推进但正常通风38 d后,煤柱进风侧将首先发生自燃.  相似文献   

16.
针对元堡煤矿1901工作面从开切眼形成到工作面开始推进经历时间过长、工作面推进速度较慢、风量过大,采空区出现CO浓度异常的现象,采取了调节风量、工作面采空区上下隅角附近建立密闭墙、喷洒阻化剂、采空区注氮等4种防灭火措施。从措施实施后的效果可以看出前3种措施仅在一定程度上缓解采空区CO浓度异常现象,而采空区注氮则可以消除采空区自燃危险。通过对注氮后采空区主要气体浓度变化趋势的分析可以看出,O2体积分数从10%降至6%阶段是注氮效果最好的阶段,可以据此开展防灭火工作,以避免因工作面推进速度较慢造成的自燃危险。  相似文献   

17.
浅埋深综放工作面采空区自燃危险区域判定   总被引:6,自引:0,他引:6  
根据安家岭一号井工矿4106工作面的实际情况,采用现场实测与数值模拟相结合的方法对该浅埋深综放工作面采空区自燃危险区域进行了研究,以采空区松散煤体气流微循环非线性渗流模型、采空区松散煤体温度分布数学模型和采空区松散煤体内氧气迁移模型为基础,建立了基于FLUENT的采空区氧浓度分布三维数学模型,模拟结果与现场实测数据基本吻合,为准确划定浅埋深综放工作面采空区自燃危险区域提供了新的技术手段。最后,根据采空区自燃危险区域范围确定了上隅角预埋管灌注三相泡沫与下隅角预埋管注氮气交替实施的防灭火工艺,实施效果良好。  相似文献   

18.
易自燃煤层综放工作面回撤期间综合防灭火技术   总被引:7,自引:0,他引:7  
针对羊场湾煤矿Y162综放工作面的煤层自然发火期仅23 d,存在自燃隐患,基于羊场湾煤矿Y162综放工作面长度300 m、回撤中利用轨道提升等复杂情况,在加强煤自燃预测预报的基础上,为缩短回撤时间,采取筑沙袋墙、充填地表裂隙等措施减少采空区漏风,同时在回撤期间通过2道埋管、架间打钻向采空区实施注胶、注氮及灌浆等综合防灭火措施,回撤期间工作面CO体积分数保持在24×10-6以下,保证了该工作面的顺利、安全回撤。  相似文献   

19.
于涛 《煤炭技术》2020,39(1):141-144
塔山矿试行小煤柱沿空开采,但工作面间小煤柱存在裂隙,致使在采工作面与毗邻采空区发生一定程度的气体交换,采空区内进入氧气,导致工作面出现自燃的可能性增加,以3-5#层8204工作面为研究对象,相邻采空区氧化带浓度明显呈现出"耳状"分布,通过对现场实际测试和数值模拟氧化带取得了深度的最大值29.6 m,长度在这一时期实现了较大的延伸。依据氧化带分布特征确定注氮步距,根据氧化带遗煤量确定注氮量,达到防灭火目的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号