首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用同步热重分析仪考察了不同升温速率下葵花秆的热失重行为并进一步研究了其热解特性,根据热重数据采用四种热分析动力学模型:Friedman法、Doyle法、Flynn-wall-Ozawa(F-WO)法和DEAM法研究了葵花秆的热分解动力学,估算出热解反应的表观活化能。结果表明:葵花秆的主要失重区间为200~400℃,随着升温速率的提高,葵花秆热解的初温度升高,热解向高温方向移动。同时四种方法获得的葵花秆活化能值分别为519.1kJ/mol,235.33kJ/mol,223.8kJ/mol和224.9kJ/mol。采用Friedman法得到的活化能值高于其它三种方法。葵花秆热解是包含了分子键能断裂的一系列复杂、连续反应过程。  相似文献   

2.
燃烧特性和燃烧反应动力学参数是燃料用于燃烧装置热力计算、设计和数值模拟必不可少的主要数据。利用同步热重分析仪在空气气氛下以升温速率分别为10℃/min, 20℃/min, 30℃/min升温至1 200℃进行了朝鲜无烟煤(KA)燃烧实验,同时与中国无烟煤(CA)进行对比,并计算得到了KA和CA的燃烧特性指数,采用等转化率的Flynn-Wall-Ozawa(FWO)和Kissinger-Akahira-Sunose(KAS)方法估算了反应动力学参数。结果表明:升温速率对KA和CA的着火性能有重要影响,升温速率越快,KA和CA的着火性能指数提高越明显;KA的燃烧特性指数均低于CA的燃烧特性指数,KA的燃烧特性比CA的燃烧特性差,更难燃烧;KA的平均表观活化能为112.13 kJ/mol,明显高于CA的81.51 kJ/mol,从反应动力学上证明了朝鲜无烟煤燃烧特性较差;对于三种升温速率下最适合的反应机理模型,KA的实验数据与理论模型A3/2,R3和A1拟合良好,而CA的实验数据与A3,A2和A3/2模型拟合良好,表示KA和CA一般遵循随机核形成及生长反应机理,KA的反应级数小于CA的反应级...  相似文献   

3.
为充分利用果壳生物质废弃物,采用热重分析对油茶壳、核桃壳、澳洲坚果壳进行了燃烧实验研究,考察了不同升温速率下3种果壳生物质的燃烧特性及动力学参数。结果表明:3种果壳生物质燃烧特性不同,但燃烧特性参数均随升温速率升高而增大;随着升温速率的增加,着火点、燃尽温度、最大燃烧速率、平均燃烧速率及综合燃烧特性指数提高;10℃/min时,油茶壳、核桃壳、澳洲坚果壳综合燃烧特性指数分别为0.56×10-7、1.18×10-7、0.88×10-7;3种果壳生物质的燃烧反应遵循一级反应动力学模型,相关系数(R2)均达0.93以上,低温阶段活化能为30.40~52.41 kJ/mol,高温阶段活化能为18.49~40.62 kJ/mol,低温阶段活化能均大于高温阶段。  相似文献   

4.
采用热重分析法,研究2种烟煤(YM1、YM2)和1种褐煤(HM)添加助燃剂前后的燃烧特性及动力学,用KAS法求取3种煤样添加助燃剂前后的燃烧活化能,并考察升温速率对添加助燃剂的中灰烟煤YM2燃烧特性的影响。结果表明,3种煤样燃烧的TG和DTG曲线形状类似,YM1的着火温度和燃尽温度最高,HM的着火温度和燃尽温度最低。添加质量分数10%的助燃剂后,各煤样的着火温度、燃尽温度降低,综合燃烧特性指数增大;添加助燃剂后,升温速率对YM2燃烧特性影响较大;添加助燃剂后,YM1、YM2和HM燃烧的平均活化能分别降低6.54 kJ/mol、4.55 kJ/mol和4.19 kJ/mol。  相似文献   

5.
采用热重分析法研究了水稻秸秆(RS)、煤粉(PC)及两者不同掺混比的混合物在不同升温速率下(10, 20, 40℃/min)从室温升至1000℃的燃烧特性,用Kissinger?Akahira?Sunose (KAS)法和Flynn?Wall?Ozawa (FWO)法计算了燃烧过程中的活化能。结果表明,失重速率(DTG)曲线中RS比PC多一个失重峰,且残余质量低。随升温速率增加,所有样品DTG曲线均向高温偏移,产生热滞后现象。RS和PC在混合燃烧过程中存在协同效应,且高温区域内更显著。PC掺混比例为50wt%时,混合物平均活化能的计算值较低,仅为76.0 kJ/mol (KAS)和83.2 kJ/mol (FWO)。  相似文献   

6.
神华煤热解特性与非等温动力学研究   总被引:1,自引:0,他引:1  
利用热重分析法对神华煤热分解特性进行了研究,探讨了升温速率对煤热解失重过程的影响。热重分析表明,神华煤最适宜的液化温度为340℃~531℃。采用Flynn-Wall-Ozawa法对热解动力学参数进行求解,并结合Satava-Sestak法对神华煤热解机理进行推测,结果表明,神华煤热解过程为三维扩散机理,整个热解反应活化能分布区间为124.8kJ/mol~217.1kJ/mol。在热解温度范围内,神华煤热解的表观活化能随着反应深度的增加而降低。  相似文献   

7.
通过热重、元素和XRD分析,研究了新疆吉木萨尔县石长沟矿区油页岩在不同升温速率下的热解特性及热解机理. 结果表明,油页岩中有机质热解生成页岩油和热解煤气的反应主要集中在300~550℃;升温速率从3℃/min增至15℃/min,热解反应向高温区移动,有机质完全热解温度从530℃升至575℃. 油页岩有机质的热解动力学分析显示,升温速率从3℃/min增至15℃/min,直接Arrhenius法计算的有机质热解活化能从243.52 kJ/mol增至257.32 kJ/mol;反应转化率从0.02增至0.97,Friedman法计算的活化能从96.39 kJ/mol增至292.84 kJ/mol.  相似文献   

8.
采用热重分析法研究了氮气气氛下竹材的热解行为及其动力学特性,分析了升温速率和粒径对竹材热解过程及动力学参数的影响. 结果表明,竹材热解分为干燥、预热解、热解和缓慢热解4个阶段;升温速率对竹材的热失重特性有显著影响,当升温速率从40℃/min增加到100℃/min时,竹材热解出现了滞后现象,热解活化能从130.87 kJ/mol下降到73.85 kJ/mol,频率因子及反应级数单调减小;不同升温速率下计算的活化能和频率因子之间存在良好的补偿效应;当粒径大于380 mm时,竹材的热解不仅受动力学控制,受颗粒传热、传质影响也较大.  相似文献   

9.
采用热重分析法对聚丙烯(PP)的热降解行为进行了表征,测定了不同升温速率下PP的热降解过程,得出其热降解活化能为239.58 kJ/mol;用锥形量热仪研究了PP的燃烧行为,随着辐射强度增加,PP的热释放速率增加,质量损失速率加快且分解起始时间提前,热释放总量保持恒定;试样厚度对表征材料的燃烧行为有一定影响。  相似文献   

10.
利用非等温热重法研究了由津凯褐煤、万泰烟煤、冀中能源无烟煤和骊达宁无烟煤4种煤在不同变质情况下制备所得煤焦的燃烧特性,利用随机孔模型(RPM)、收缩核未反应芯模型和体积模型模拟了煤焦燃烧反应过程. 结果表明,煤焦燃烧性能与煤粉变质程度、灰分含量和升温速率有关;降低煤粉灰分含量、提高升温速率能够明显加快煤焦燃烧速率,缩短燃烧时间. 动力学计算表明,RPM模型表征煤焦燃烧效果最优,由其所计算的4种煤焦的表观活化能分别为55.74,88.26,84.27和101.30 kJ/mol.  相似文献   

11.
采用热分析技术(TG/DTG)研究了多聚甲醛法合成硼酚醛树脂的热降解性能,利用Friedman法和Flynn-Wall-Ozawa法对其热降解动力学进行了分析,计算出了不同条件下降解过程的活化能Ea。结果表明:树脂的热降解过程分为210~438℃,438~728℃,728~900℃3个阶段,当升温速率为10℃/min时,对应热失重率分别为4.256%,40.326%和23.717%,900℃下静态空气中质量残留31.442%。合成树脂的活化能在各升温速率下的平均值是29.91kJ/mol,反应级数n为2.837。  相似文献   

12.
利用TG-FT-IR技术分别以5、10、20℃/min 3种不同的升温速率,在室温至1000℃下对陕西关中地区麦秸秆(麦秆)的热解行为、特性及动力学进行了研究。研究结果表明,关中麦秆的热解过程可分为4个阶段:失水(室温到150℃)、半纤维素热解(150~300℃)、纤维素热解(300~380℃)及木质素热解(380~1000℃);升温速率的升高使关中麦秆的起始热解温度提高,较低的升温速率可克服热解过程中的传热滞后现象,更有利于关中麦秆的热解。关中麦秆升温速率20℃/min下最大失重速率处的的热解产物主要为H2O、CH4、CO2、CO及一些芳香族、酸类、酮类、醛类、醇类、烷烃、酚类和醚类等有机物。通过无模式函数法中的FWO和KAS法对关中麦秆的热解表观活化能在转化率(α)0.1~0.8内进行了计算,所得活化能均约为202 kJ/mol。此外,Kissinger法估算所得表观活化能约为171.12 kJ/mol,略低于FWO法和KAS法热解表观活化能。  相似文献   

13.
热降解动力学方法研究ABS的降解机理   总被引:2,自引:0,他引:2  
在空气气氛下,采用热重分析(TGA)研究了不同升温速率下丙烯腈-丁二烯-苯乙烯共聚物(ABS)的热降解过程,分别使用Flynn-Wall-Ozawa法和Kissinger法对降解过程进行动力学分析。结果表明,ABS降解包含2个阶段,350~450 ℃之间发生降解反应,同时伴有交联反应,降解活化能(Ea)在200 kJ/mol左右,转化率在80 %~90 %时发生炭化反应,Ea提高到262.81 kJ/mol;500~600 ℃之间是残炭的氧化,Ea降低到130 kJ/mol左右,炭层稳定性较差。ABS的降解过程反应级数为0.946,降解受到随机成核与生长机理控制,降解在ABS基体内进行,而不是表面,所以降解气体燃烧不完全,易产生黑烟和熔融滴落。  相似文献   

14.
油页岩半焦燃烧反应活性分析   总被引:3,自引:0,他引:3  
采用美国Perk in E lm er公司生产的Pyris1 TGA热重分析仪,对桦甸油页岩半焦进行燃烧特性试验研究,得到3种不同升温速率下的油页岩半焦燃烧特性曲线,并使用平均质量反应性指数和燃烧稳定性指数对半焦反应性加以评价。油页岩半焦燃烧分燃烧快速段、过渡段和燃烧慢速段3个阶段进行。随着升温速率的提高,在燃烧快速段,表观活化能为133.901 3—100.204 2 kJ/mol;在燃烧慢速段,表观活化能为146.317 1—211.409 3 kJ/mol。利用Coats-Redfern法确定了燃烧快速段反应级数为3,而燃烧慢速段则为5.5,从而得到油页岩半焦燃烧化学反应的动力学参数,为油页岩半焦的有效开发与经济利用提供了理论依据。  相似文献   

15.
以低变质粉煤的低温干馏产物兰炭为固体原料,考察了采用干法制浆技术制备的水炭浆(CHWS)的燃烧性能。通过热重分析法(TG-DTG-DSC)可知,CHWS的燃烧过程可分为水分蒸发段、挥发分及炭质颗粒燃烧段和残炭燃烧段三个阶段。燃烧特性参数中着火点较高,温度可达446.4℃,出现最大燃烧速率的温度在563.7℃。分析浆体在10℃/min,20℃/min,30℃/min和40℃/min四种速率下的燃烧性能,结果表明:升温速率的提高可降低着火点,提高燃烧终止温度,扩展了燃烧区间(430.7℃~855.7℃),CHWS的最大失重速率提升,燃烧过程向高温方向移动,存在热滞后现象。基于Arrhenius公式的Doyle积分法求取的动力学参数表明:升温速率的提高有助于降低浆体的燃烧活化能,同一升温速率下第二阶段的燃烧活化能更低,最剧烈的燃烧过程发生在40℃/min升温速率时的第二阶段,活化能为14.18 kJ/mol。在Aspen模拟中兰炭的常规组分特性从数据库中获取,非常规组分不参加相平衡和化学平衡计算,燃烧过程按热重分析结果的三阶段划分,主体模块燃烧炉的模拟采用收率反应器和平衡反应器两部分完成,模拟结果显示:CHWS燃烧烟气中H_2O+CO_2+N_2的总量为96.46%(质量分数),污染气体NO+NO_2+SO_2+SO_3的总量为0.52%(质量分数),二次除尘后粉尘含量降低至0.013 kg/h,CHWS具有燃烧高效充分、污染气体排放量低、粉尘含量少等优点,是一种高效清洁的固态燃料源燃料。  相似文献   

16.
以微晶纤维素为原料,在氮气气氛中利用热重分析仪考察了不同升温速率条件下纤维素的热解实验,分析了纤维素的热解动力学特性。采用双等双步法和Popescu法从热分析动力学的41种机理函数中选取最概然反应机理函数,同时运用Freeman-Carroll法、Coats-Redfern法、Starink法和双等双步法4种热分析方法计算热解反应活化能(E)、指前因子(A),并对结果进行了分析比较。结果表明,随着升温速率提高,纤维素热解起始温度增加,热失重速率升高;纤维素的热解过程可分为4个阶段:脱水预热(40~120℃)、热解初期(120~260℃)、主要热解失重(260~400℃)和炭化(400~900℃)。纤维素主要热解段分两个阶段进行,其活化能在低温段(260~350℃)时,为166~176 kJ/mol,高温段(350~400℃)时,为171~216 kJ/mol;采用反Jander动力学模型能较好地描述主要热解反应过程;采用单一扫描速率法(Freeman-Carroll法和Coats-Redfern法)分析结果与实际值有较大偏差,多重扫描速率法(Starink法和双等双步法)得到的结果更具可靠性。  相似文献   

17.
采用热重技术对稻壳(DK)和杨树锯末(JM)燃烧进行分析,考察了不同预处理方式对稻壳燃烧特性的影响,并研究了不同升温速率及稻壳和杨树锯末掺混质量比对掺混燃烧特性及燃烧动力学的影响。结果表明:水洗及酸洗可使稻壳燃烧TG-DTG热重曲线向高温区移动,最大失重速率及对应失重温度升高。水洗使稻壳综合燃烧特性指数提高2.5×10-7~5.9×10-7%/(min2·℃3),而酸洗使稻壳综合燃烧特性指数下降11×10-7~11.9×10-7%/(min2·℃3)。不同预处理后稻壳在挥发分析出燃烧阶段的活化能高于未处理稻壳,酸洗后稻壳焦炭燃烧阶段活化能降低16.94 kJ/mol,而水洗使稻壳焦炭燃烧阶段活化能升高。提高稻壳添加比例,混合燃料着火温度和燃尽温度降低。随着升温速率的提高,混合样品综合燃烧特性指数和残余率升高。70%稻壳和30%杨树锯末混合燃料在升温速率40℃/min下燃烧产生协同效应。  相似文献   

18.
中药废渣经过烘焙后是一种具有应用潜力的固体燃料。采用热重分析仪对烘焙中药渣的热解及燃烧特性进行了研究,利用Kissinger-Akahira-Sunose (KAS)法及Coats-Redfern法对热解及燃烧的动力学进行求解,评估了烘焙中药渣的燃烧特性。研究发现烘焙中药渣的热分解分为2个阶段,第一阶段的活化能为76.1~94.0 kJ/mol,第二阶段的活化能为26.8~38.8 kJ/mol。烘焙中药渣的燃烧分为3段反应过程,第一阶段主要是挥发分的析出及燃烧,活化能为80.5~97.3 kJ/mol;第二阶段属于挥发分及部分焦炭的燃烧,活化能为18.3~28.5 kJ/mol;第三阶段的主要反应为残余焦炭的燃烧,活化能为41.8~50.6 kJ/mol。不同烘焙条件下制得的中药渣都较易着火燃烧,着火温度在280.3~294.8℃。经O_2烘焙的中药渣前期可燃性以及综合燃烧特性最好,最易燃尽,表明燃烧烟气烘焙中药渣是可行的。  相似文献   

19.
以氮气为载气,采用热重分析仪对松木屑进行热解实验,考察了载气流速、升温速率等对松木屑热解过程的影响,求解了热解表观动力学参数。研究表明,松木屑的热解过程分三个阶段,主要热解温度为200~450℃,600℃后热解反应基本完成;载气流速对热解反应影响较小,升温速率对热解反应影响较大;松木屑热解表观活化能在40~70 kJ/mol范围内。  相似文献   

20.
利用热重分析法比较研究了新型硬质聚氨酯泡沫[超支化聚氨酯多元醇型(HBPU型)]和硬质聚氨酯泡沫(RPUF)在氮气中的热分解行为,探讨了HBPU型RPUF在不同升温速率下的热分解动力学,运用Kissinger最大失重率法和Flynn-Wall-Ozawa等失重百分率法计算获得了其热分解过程的活化能。研究结果表明,HBPU型RPUF的初始分解温度(T5%)为205℃,半寿温度(T50%)为361℃,略低于传统的RPUF。Kissinger法得到的HBPU型RPUF的热分解表观活化能为159.8 kJ/mol;Flynn-Wall-Ozawa法得到的热分解过程分为三个阶段:第一阶段的平均活化能为82.8 kJ/mol,第二阶段的平均活化能为140.7 kJ/mol,第三阶段的平均活化能为111.3 kJ/mol,HBPU型RPUF具有较好的热稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号