首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了得到巷道瓦斯爆炸时的传播规律,利用大型试验巷道对不同质量、浓度的瓦斯-空气混合物的爆炸过程及传播规律进行了试验研究,分析了瓦斯爆炸时最大爆炸压力的时空变化特征、瓦斯爆炸火焰速度变化特征、火焰波及范围变化特征等规律,得出:1)最大爆炸压力的峰值较大,且随着瓦斯量的增加,出现最大压力峰值的位置距爆源点更近;2)最大爆炸压力呈现时间随与爆源的距离增大单调增加;3)随着瓦斯量增大,火焰传播速度绝对值明显增大,火焰传播速度最大点距爆源距离减小;4)火焰区长度可达原始瓦斯积聚区长度的3~6倍,但火焰传播距离并不与瓦斯量的增加成正比.研究所得结论可为矿井瓦斯事故的预防和治理提供参考.  相似文献   

2.
为揭示管道内甲烷-煤尘预混湍流特征及爆炸火焰传播过程,构建了竖直管道内甲烷-煤尘预混扩散及爆炸物理数学模型;基于流体力学及传热-传质理论,对管道内甲烷-煤尘扩散特征和爆炸过程进行了数值模拟。划分了管道内气固两相扩散特征阶段,分析了初始真空度和进气压力对扩散湍流强度的影响规律;研究了煤尘粒径、浓度及甲烷浓度对爆炸最大压力及最大爆炸压力上升速率的影响特征;揭示了管道内甲烷-煤尘预混爆炸过程中火焰传播特征及爆炸机制。结果表明:煤尘颗粒在竖直管道罐内扩散可分为快速注入、减速分散、稳定和沉降4个连续阶段,初始真空度及进气压力对湍流强度均有影响;爆炸过程中,不同时刻下管道整体爆炸压力场基本均匀分布。甲烷浓度、煤尘浓度及粒径与最大爆炸压力P_(max)及最大爆炸压力上升速率(dP/dt)_(max)均呈现二次函数关系;不同时刻下爆炸火焰结构及火焰高度、火焰传播速度的模拟与试验结果具有较好的一致性,火焰结构呈现"月牙-S-下凹月牙-指尖"传播至爆炸结束。温度分布不均,高温区集中在管道上部和中下部。火焰传播速度先增大后减小,后期呈现震荡性特征。  相似文献   

3.
障碍物形状对瓦斯爆炸影响的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
文章利用水平管道式气体--粉尘爆炸实验装置,研究了障碍物形状对瓦斯爆炸火焰传播速度、最大爆炸压力及爆炸压力上升速率的影响.结果表明:障碍物的存在极大的提高了瓦斯的火焰传播速度、最大爆炸压力及压力上升速率;障碍物的形状整体上对最大爆炸压力影响不大,对火焰速度和爆炸压力上升速率影响较大,其中,条型障碍物的影响最为明显,半圆型次之,圆环型影响最小.  相似文献   

4.
矿井瓦斯煤尘爆炸传播实验研究   总被引:7,自引:0,他引:7  
煤矿中瓦斯爆炸容易引起煤尘参与爆炸,且掘进工作面是瓦斯煤尘爆炸事故的多发区域。在与实际矿井环境、几何条件相似的大型地下试验巷道中,进行了独头巷道瓦斯煤尘爆炸火焰、冲击波传播试验。试验中,瓦斯煤尘爆炸火焰到达各测点的时间与测点距离呈对数函数关系;爆炸火焰的传播速度在铺有煤尘段迅速上升,过了煤尘段开始下降;火焰区长度约为煤尘区长度的2倍;爆炸冲击波压力在铺有煤尘段前端降到最低值,然后迅速上升到最大值后下降。实验结论为煤矿隔抑爆装置的研制和安装提供了理论基础。瓦斯煤尘爆炸与单纯瓦斯爆炸相比,最大爆炸压力峰值大,火焰传播速度快;瓦斯煤尘爆炸的威力和破坏程度,要远远大于单纯瓦斯爆炸。因此,在煤矿实施防尘降尘技术,具有十分重要的意义。  相似文献   

5.
《煤矿安全》2016,(7):27-29
为研究地面放空管道内瓦斯爆炸的转播特性,模拟地面放空管道内瓦斯的爆炸环境,对管道内气体的爆炸极限、爆炸压力和爆炸火焰传播速度等进行实验分析。结果表明,在实验管道内,爆炸冲击波冲量在爆炸初期逐渐增大,达到最大值后,又逐渐减小,在靠近实验管道开口位置,冲量又突然增大。爆炸压力随实验管道的延长而增大,在靠近实验管道的开口端达到最大值。瓦斯浓度低于9%时,爆炸火焰传播速度随浓度降低而减小;瓦斯浓度高于11%时,火焰传播速度随浓度增大而减小。  相似文献   

6.
瓦斯浓度对爆炸传播影响的实验研究   总被引:4,自引:0,他引:4  
在DN700mm试验管道中,进行了不同浓度瓦斯爆炸火焰、压力波传播试验.从中可以看出,爆源点的最大压力值,并不是整个过程的最大值;爆炸压力峰值与传播距离呈三次函数关系,瓦斯浓度对爆炸压力峰值影响较大;火焰速度随着传播距离的加长而依次增大,瓦斯浓度对火焰传播速度也有比较大的影响.研究结果为煤矿井下隔抑爆装置和瓦斯输送管道隔抑爆装置的研制及安装技术规范,制定奠定理论基础,同时,也为煤矿瓦斯爆炸事故调查分析提供理论依据.  相似文献   

7.
《煤炭学报》2021,46(6)
为了提升煤矿瓦斯煤尘爆炸灾害的防治技术和效果,基于不同爆炸能量和隔爆屏障粉体质量浓度研究了大尺度巷道内主动隔爆系统的隔爆灭火性能。在敞开空间采用高速摄影技术测试了主动巷道隔爆系统隔爆屏障的形成过程及动态分布特征,隔爆器粉体能在120 ms时刻形成8.04 m~2有效断面,在1 200 ms时刻覆盖20 m,在空间内持续作用5 000 ms以上,得出驱动气体压力是影响隔爆屏障动态分布和覆盖距离的直接因素。在此基础上,采用断面7.2 m~2大型地下巷道,进行了瓦斯(煤尘)爆炸传播实验和隔爆实验,分析了实验过程中压力波、火焰阵面的传播特性。研究结果表明:粉体隔爆屏障能有效起到衰减压力波和扑灭爆炸火焰的作用,在粉体质量浓度较低时,爆炸火焰将穿越隔爆屏障,而随着质量浓度的增加,隔爆效果增强。在瓦斯隔爆实验中粉体质量浓度为277.8 g/m~3时,40 m位置爆炸超压衰减为36.4 kPa;在瓦斯煤尘爆炸隔爆实验中,粉体质量浓度为625.0 g/m~3时,70 m位置爆炸超压降低至54.0 kPa,对比同等强度的爆炸传播实验,最大压力下降率均大于60%。瓦斯(煤尘)爆炸隔爆实验中,驱动氮气和粉体所形成的隔爆屏障能有效起到冷却降温、隔绝窒息和消耗自由基的作用。随着粉体质量浓度的增加,爆炸火焰传播速度迅速下降,整个传播过程中的最大火焰速度位置前移,出现在隔爆器前端,爆炸火焰在隔爆器后20 m区域内被完全扑灭。  相似文献   

8.
密闭容器复杂环境瓦斯爆炸压力特性研究   总被引:1,自引:0,他引:1  
在密闭容器内对不同初始温度和环境压力条件下的瓦斯气体进行爆炸测试,研究了复杂环境条件下瓦斯气体的爆炸压力特性。通过实验得出:瓦斯爆炸存在最佳爆炸浓度,最大爆炸压力和最大爆炸压力上升速率随瓦斯浓度变化呈抛物线分布;环境条件对最大爆炸压力上升速率影响较小,而对最大爆炸压力影响较大。  相似文献   

9.
为研究井下瓦斯爆炸诱导沉积煤尘参与爆炸现象,利用独头试验巷道模拟不同体积瓦斯爆炸产生不同诱导强度的冲击气流,并对沉积煤尘的诱导飞扬能力和参与爆炸传播规律进行研究。结果表明:瓦斯爆炸产生的冲击气流能卷扬沉积煤尘飞扬,形成煤尘"二次爆炸",进一步扩大爆炸的伤害范围;当瓦斯区的气体体积从50 m3增加到200 m3时,瓦斯爆炸产生冲击气流在瓦斯段峰值压力从0.14 MPa增加到0.31 MPa,卷扬沉积煤尘的诱导卷扬能力增强;试验测试煤尘段的最大爆炸压力分别达到0.36和0.83 MPa;无煤尘火焰长度分别为75.1和115.2 m,整个爆炸过程朝更迅猛的方向发展。  相似文献   

10.
在Φ700 mm管道中进行了瓦斯爆炸压力峰值、火焰传播速度的试验研究,对不同点火能量条件下的瓦斯—空气混合气体爆炸试验研究结果表明:爆炸压力峰值在沿管道的传播过程中,从爆源点附近是先增大后减小,然后再逐渐增大的,且最大压力峰值出现在出口附近;火焰传播速度随着传播距离的增大而逐渐增大;点火能量对爆炸压力峰值、火焰传播速度等都有重要影响。这些研究结果为煤矿井下隔抑爆装置和瓦斯输送管道隔抑爆装置的研制及安装技术规范的制订奠定了理论基础,也为煤矿瓦斯爆炸事故调查分析提供了理论依据。  相似文献   

11.
为研究不同湍流环境下,煤尘对甲烷爆炸特性的影响,基于20 L爆炸球采用0、25、50、100、200 g/m^3的煤尘分别与6.5%、9.5%、12%的甲烷在点火延迟时间60 ms和120 ms的条件下进行混合爆炸实验。结果表明:点火延迟时间的增大对单相甲烷爆炸最大爆炸压力影响较小,显著降低最大压力上升速率;有煤尘参与时,3种甲烷浓度下,点火延迟时间的提高能够降低最大爆炸压力和最大压力上升速率,当甲烷浓度为9.5%时,2种点火延迟时间下,对应的最佳煤尘浓度不同,点火延迟时间越小,最佳煤尘浓度越小,甲烷浓度为12%时,点火延迟时间为60 ms时,最大爆炸压力和最大压力上升速率对高浓度煤尘比较敏感,火延迟时间为120 ms时,最大爆炸压力和最大压力上升速率对低浓度煤尘较为敏感。  相似文献   

12.
《煤炭学报》2021,46(2)
在全透明有机玻璃管道中,利用同步控制系统、高速摄像系统和高速粒子成像测速系统(PIV),从爆炸超压、火焰传播速度、火焰温度和复合火焰演化规律等方面研究了不同瓦斯爆炸强度条件下诱导沉积煤尘爆炸特性和复合火焰传播特性,并分析了煤尘卷扬湍流特征。实验结果表明:3种工况下,随着甲烷体积分数的增加,爆炸超压和压力上升速率明显增高,压力峰值来临时刻减小,且当体积分数超过8.5%后,压力曲线和压力上升速率曲线出现明显的振荡特征;复合火焰传播速度远大于纯瓦斯爆炸工况,且复合火焰传播速度-位置曲线均呈波动上升特征;甲烷的体积分数越接近当量比,爆炸超压、波前流速、火焰锋面温度及其温度上升速率越高;甲烷体积分数为9.5%和8.5%时,复合火焰呈"倒钩形",之后很快出现火焰加速;而甲烷体积分数降至8.5%后,复合火焰亮度降低,结构呈现破碎和不连续的形态特点。PIV测试表明:甲烷体积分数为9.5%时,初始爆炸强度高,波前流速快,煤粉可随冲击波整体快速运动,卷扬区整体湍流强度较高,大大加快了煤粉与空气的混合速度,促进了卷扬煤粉的燃烧。较高的冲击波波前流速和火焰锋面温度2种参数相结合是造成甲烷/煤尘复合火焰不断加速的原因。  相似文献   

13.
管道内障碍物形状对瓦斯爆炸影响的试验研究   总被引:2,自引:0,他引:2  
为了预防和降低瓦斯爆炸造成的危害,利用自制的水平管道式可燃气体一粉尘爆炸装置模拟矿井巷道,在常温常压下,使用4种不同形状的障碍物,研究瓦斯爆炸压力和火焰传播速度的变化规律。结果表明:障碍物的存在对瓦斯爆炸具有显著影响,增大了爆炸压力和火焰传播速度,改变了爆炸压力变化规律。障碍物形状对瓦斯爆炸影响程度不同,即挡板障碍物使得爆炸压力和火焰传播速度最大,4孔圆环影响最小。  相似文献   

14.
基于图像处理的管道瓦斯爆炸火焰传播速度特征   总被引:2,自引:0,他引:2       下载免费PDF全文
为研究瓦斯/空气预混气体爆炸火焰传播速度特征,利用瓦斯爆炸实验系统开展了9.5%体积分数下的瓦斯爆炸实验,通过高速摄影系统拍摄了爆炸火焰传播图像;分析提出了利用图像相关系数法计算瓦斯爆炸火焰传播速度的基本原理和方法,计算分析了9.5%体积分数瓦斯爆炸全过程中的火焰传播速度动态变化规律。结果表明:爆炸火焰处于加速、减速、反向传播,再加速、减速直至熄灭的过程,火焰不断震荡。进一步地对爆炸火焰进行了细化分析,通过对预处理图像进行横向和纵向的等分,计算视窗中不同部分的火焰传播速度,并与按整体计算的速度进行对比验证。利用该方法可以计算瓦斯爆炸火焰充满整个管道时的传播速度,为研究瓦斯或者其他气体爆炸火焰传播规律提供了一种新途径。  相似文献   

15.
为了探讨瓦斯在大型管道中的爆炸特性及管道末端小白鼠瓦斯爆炸伤的伤情特点,在直径2 000 mm的管道中,进行3种典型浓度下不同体积分数的瓦斯爆炸试验,并在管道末端放置数只健康小白鼠,观察其伤亡情况。分析不同体积和浓度下瓦斯压力、温度、火焰传播规律这3个爆炸特性及深入观察小白鼠爆炸伤后各组织、器官的损伤特性。实验结果表明,爆炸冲击波和温度是导致爆炸伤亡的主要原因,瓦斯浓度为9.5%,体积为1.6 m3时,爆炸压力、爆炸温度和火焰传播速度达到均达到峰值,此时的小白鼠的死亡数量最大,损伤程度最高,主要表现为烧伤、肺部出血和脑组织出血。  相似文献   

16.
为研究煤矿巷道复杂条件下的瓦斯爆炸传播特性,通过FLACS数值模拟了巷道截面突变对瓦斯爆炸过程中的压力、温度及火焰传播速度的影响。结果表明,当巷道截面发生突变时,各测点压力峰值和温度峰值均增大;横截面突扩面积越大,火焰峰面表面积越大,火焰传播速度就越小,横截面突缩面积越小,火焰传播至突缩段时产生的湍流作用越明显,使得火焰传播速度加快,同时火焰峰面被拉伸的越长;巷道截面突变使气流的湍流强度增大,爆炸反应速率加快,因此其火焰传播速度均大于截面未突变巷道内的火焰传播速度。  相似文献   

17.
瓦斯浓度对瓦斯爆炸影响的数值模拟研究   总被引:2,自引:0,他引:2  
采用流体动力学软件Fluent,对方形管道内体积分数分别为7.5%,9.5%,11.5%的瓦斯气体爆炸过程进行数值模拟研究,分析其爆炸过程中的压力、温度和火焰传播速度。结果表明:在3种不同浓度的瓦斯气体爆炸过程中,火焰的传播趋势大致相同,但火焰传播速度、管道内的超压以及温度有较大的区别;体积分数为9.5%的瓦斯气体爆炸过程中火焰传播速度、超压和温度均最大。模拟结果与前人的实验结果吻合。  相似文献   

18.
《煤矿安全》2013,(10):14-16
为了预防和降低瓦斯爆炸事故造成的危害,利用自制的水平管道式可燃气体-粉尘爆炸装置模拟矿井巷道,通过改变弯管的角度及位置,研究瓦斯爆炸压力和火焰传播速度的变化规律。结果表明:弯管对瓦斯爆炸具有显著影响,使得最大爆炸压力增大,火焰传播速度加速。弯管角度对瓦斯爆炸影响不同,45°弯管影响最小,90°弯管影响最大。  相似文献   

19.
毕明树  李江波 《煤炭学报》2010,35(8):1298-1302
在1.2 m长竖直爆炸管内对不同初始条件下的甲烷-煤粉混合物进行了弱点火火焰传播实验。分别考察了甲烷浓度、煤粉浓度、煤粉粒径以及点火延迟时间对复合爆炸火焰传播特性的影响。结果表明,煤粉的存在使得纯甲烷在空气中爆炸火焰传播速度显著增大,最大火焰传播速度出现在距离点火端0.425 m(长径比等于6)处;火焰传播至长管末端壁面后,爆炸压力达到最大值;甲烷浓度越接近化学当量比,火焰传播速度越快;火焰传播速度随煤粉浓度和点火延迟时间的变化趋势为先增大后减小,最佳煤粉浓度为500 g/m3,最佳点火延迟时间为500 ms;在一定粒径范围内,火焰传播速度随着煤粉粒径的增大而减小。  相似文献   

20.
为了研究新安煤矿的煤尘爆炸特性,采用20升爆炸测试系统,测试了煤尘的爆炸下限、最大爆炸压力以及压升速率,为煤矿科学防止煤尘爆炸提供实验支持。实验结果表明:新安煤矿煤尘最低爆炸浓度为100g/m3,最大爆炸压力0.814MPa,最大压力上升速率为35.782MPa/ms,煤尘爆炸下限低,爆炸猛度大,要对煤矿的煤尘爆炸重点预防。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号