首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 234 毫秒
1.
:针对临空巷道大变形及控制难题,以陕北某矿5-2 煤两相邻工作面开采为研究背景,提出了通过优化区段煤柱留设宽度来减小巷道变形的方法.综合采用理论分析和数值模拟,研究了不同区段煤柱宽度下采空区应力分布特征及中部应力恢复区宽度,区段煤柱载荷分布形态及演化特征,并结合区段煤柱弹塑性演化规律,确定区段煤柱合理留设宽度.结果表明:① 双面开采后,首采工作面采空区 Salamon单元垂直应力呈不对称“马鞍形”分布,且随着区段煤柱宽度的增加,应力峰值从5.8 MPa逐步减小至3.9 MPa,采空区应力恢复区宽度从187m 缩减至162m;而临空工作面采空区Salamon单元采空区垂直应力呈“尖顶拱形”分布,峰值及中部应力恢复区宽度变化不大;② 随着区段煤柱宽度的增加,其垂直应力分布形态由“拱形”逐步演化为“马鞍形”,应力峰值由37.19MPa逐步减小至28.32 MPa,垂直应力趋于均匀化,并以弹性核区占比40%作为煤柱临界失稳判别指标,确定区段煤柱的合理宽度为20m,与理论计算结果基本一致.  相似文献   

2.
特厚煤层综放工作面区段煤柱合理宽度研究   总被引:1,自引:0,他引:1  
针对塔山矿特厚煤层综放工作面与回采巷道对头施工过程中面临的区段煤柱合理宽度留设、回采动压影响范围确定等问题,采用理论分析、数值模拟及现场应力实测等手段对特厚煤层综放采场覆岩断裂结构、区段煤柱应力分布及区段煤柱合理宽度进行研究。采空区一侧煤体应力,应力剧烈影响范围30~35 m。煤柱应力现场实测表明,相邻工作面回采期间应力沿煤柱宽度大致呈单峰型、非对称分布,应力高峰区距8210回风巷21~30 m、距8208采空区8~17 m,采空区顶板运动稳定滞后距离120~130 m。结果表明,塔山矿特厚煤层综放面对头施工条件下留设38 m煤柱是安全的,从煤柱应力分布角度分析煤柱宽度可减小至30~32 m。  相似文献   

3.
针对综放工作面厚煤层,过大的护巷煤柱造成煤炭资源浪问题,以串草圪旦煤矿6 102工作面为工程背景。结合运用理论分析、数值模拟与现场试验等方法,分析了不同宽度的护巷煤柱的应力及弹塑性区的分布规律,研究表明:(1)掘巷期间,随着护巷煤柱宽度的增大,6 103采空区侧的应力分布基本无明显变化,而6 102辅运巷道侧的应力分布为降低趋势,护巷煤柱中部应力叠加现象为降低趋势。(2)当护巷煤柱宽度大于15 m时,护巷煤柱两侧的塑性区范围基本无明显变化,护巷煤柱内的弹性区宽度随着护巷煤柱宽度的增大而增大。(3)回采期间,留设的护巷煤柱宽度大于14 m时,回采工作面附近的护巷煤柱存在弹性区,综合考虑合理的护巷煤柱的宽度为14 m。(4)现场实践证明巷道围岩得到了很好的控制。  相似文献   

4.
根据芍药花煤矿4404工作面工程地质条件,采用理论分析,FLAC3D数值模拟和现场实测相结合的方法研究了孤岛综放工作面合理护巷煤柱尺寸,分析了不同宽度护巷煤柱条件下煤柱内弹塑性区发育情况和竖直应力分布规律,结果表明:当煤柱宽度在20~25 m之间时,煤柱中部有足够大的弹性核,可保证煤柱自身及巷道的稳定性;当煤柱宽度大于19 m时,煤柱内竖直应力开始减小,并且呈现出双峰应力分布状态,由此确定4404工作面合理护巷煤柱宽度为20 m。  相似文献   

5.
为最大限度地开采煤炭资源,减少区段煤柱的留设宽度,文章以斜沟煤矿18104和18106大采高综采工作面区段煤柱的留设为背景,通过理论分析与数值模拟的方法,分析了不同宽度区段煤柱的破坏范围及垂直应力分布特征,优化了大采高综采工作面区段煤柱的留设宽度,主要得到如下结论:理论计算得到两侧采空条件下和一侧采空区条件下煤柱的破坏范围分别为16.54m和5.61m,理论确定区段煤柱的合理留设宽度为20m;数值模拟结果表明,区段煤柱的留设宽度由30m减小至20m时,煤柱留设由“宽煤柱”向“窄煤柱”转变,煤柱破坏范围由16m减小至13m,变化不大,且煤柱中部仍存在一定宽度的弹性核区,同时,煤柱受到的最大垂直应力增长5.54MPa,并未超过煤柱的极限承载能力,煤柱仍具有一定承载能力;最终确定18104工作面与18106工作面之间区段煤柱的合理留设宽度为20m。  相似文献   

6.
浅埋薄基岩煤层护巷煤柱优化机理研究及方案确定   总被引:1,自引:0,他引:1       下载免费PDF全文
针对浅埋深薄基岩中厚煤层护巷煤柱合理宽度的问题,结合李家壕煤矿2-2中煤层的实际情况,对其煤柱的可优化性、不同煤柱宽度的应力分布特征及塑性区分布范围进行研究,结果表明:浅埋深薄基岩中厚煤层中煤柱矿压较小,矿压显现不明显,煤柱宽度大于16m时,煤柱整体应力较低,塑性区范围较小,中间弹性核宽度过大;煤柱宽度小于8m时,两侧支承压力叠加,煤柱整体应力较大,塑性区几乎贯通整个煤柱,不能满足煤柱稳定的需求;12m煤柱为合理煤柱,整体应力相对不大且中间弹性核合适,一个工作面可多回收煤炭6.21万t。  相似文献   

7.
吕永刚 《山西煤炭》2014,(5):51-53,69
针对大倾角综放开采区段煤柱留设尺寸的确定难题,建立了相应区段煤柱力学模型,并用极限平衡理论分析及数值模拟结合的方法,研究了煤柱尺寸的理论公式、应力分布、模拟分析。研究表明:区段煤柱合理留设宽度是煤柱两侧塑性区宽度和中心弹性区煤体的临界尺寸之和;揭示了不同宽度区段煤柱受上、下区段工作面采动影响时,区段煤柱支承压力分布规律曲线;得出孟家窑煤矿大倾角煤层区段煤柱宽度为25 m时即可保持稳定。研究结果在该矿5102工作面的成功应用,可为大倾角煤层区段煤柱合理尺寸提供理技术参考。  相似文献   

8.
《煤炭技术》2017,(1):17-19
综放开采过程中,区段煤柱受到采空区与相邻采煤工作面的影响,产生应力叠加,区段煤柱内沿空掘巷留设小煤柱有效地卸载了煤柱两侧压力,大煤柱与小煤柱相互影响,共同承载上部载荷。通过FLAC3D数值模拟的方法,对某矿的区段煤柱留设进行了研究,研究其两侧应力分布、塑性变形,既要使工作面避开应力增高区,又要把煤柱宽度控制在合理范围内。  相似文献   

9.
为获取上保护层充分采动后,区段煤柱影响下的上覆岩层结构及底板应力传递规律,基于三铰斜拱理论推导了合理拱轴线方程;数值模拟了不同宽度区段煤柱的保护层底板应力分布规律;基于三铰斜拱和弹性力学理论2种方法得到了保护层底板应力分布的解析解,并通过现场实测验证。研究表明:三铰斜拱形态参数与留设煤柱宽度、煤层开采高度、采空区卸压宽度等动态相关;当煤柱宽度大于15 m时,采空区底板重新压实区将产生三铰斜拱结构引起的附加应力,并且应力极值点随煤柱宽度增加而向采空区中心移动。现场试验得出被保护层回采巷道应内错布置,合理错距为10~20 m。  相似文献   

10.
根据芍药花煤矿4404工作面工程地质条件,采用理论分析,FLAC3D数值模拟和现场实测相结合的方法研究了孤岛综放工作面合理护巷煤柱尺寸,分析了不同宽度护巷煤柱条件下煤柱内弹塑性区发育情况和竖直应力分布规律,结果表明:当煤柱宽度在2025 m之间时,煤柱中部有足够大的弹性核,可保证煤柱自身及巷道的稳定性;当煤柱宽度大于19 m时,煤柱内竖直应力开始减小,并且呈现出双峰应力分布状态,由此确定4404工作面合理护巷煤柱宽度为20 m。  相似文献   

11.
陆军 《现代矿业》2019,35(4):70-73
为优化煤柱留设宽度,提高采区煤炭采出率,确保工作面的回采推进速度,结合薛虎沟煤矿2-106工作面实际开采条件,运用理论分析与数值模拟相结合的方法对2-106B工作面停采护巷煤柱尺寸进行研究,通过对护巷煤柱进行极限平衡计算,确定留设合理煤柱尺寸应不小于20.32 m;通过FLAC3D数值模拟分析保护煤柱宽度为25,22,20,15,10 m条件下巷道围岩变形情况,得出留设保护煤柱宽度为22 m时,煤柱内集中垂直应力逐渐向稳定非对称拱形分布形态过渡,煤柱两侧产生一定剪破坏和拉破坏,但煤柱中部未破坏区域范围扩大,煤柱稳定性较好;煤柱留设宽度为22 m时,对2-106B工作面液压支架拆除的时间段护巷煤柱应力进行监测,结果表明,巷道围岩得到有效维护,并处于稳定状态。  相似文献   

12.
针对厚煤层沿空掘巷工作面煤柱留设合理宽度的问题,以沙曲一矿4305工作面为工程背景,采用理论推导、数值模拟以及现场监测等方法研究分析煤柱的合理宽度、不同煤柱宽度下围岩变形特征以及现场监测煤柱应力.研究结果表明,根据极限平衡理论计算煤柱破坏塑性区宽度并结合煤柱稳定条件确定煤柱宽度至少为7.8 m.运用FLAC3D数值模拟...  相似文献   

13.
为了提高沿空掘巷的稳定性,采用FLAC3D分别模拟2203与2205工作面3m、5m、6m、8m煤柱宽度时的沿空巷道垂直应力和塑性区分布规律。当煤柱宽度为5m时,煤柱为垂直应力主要承载,且中间部位将出现小范围的弹性区,此时的煤柱变形最为稳定。采用“十字布点”监测沿空巷道围岩变形量可知,5m煤柱能保证巷道稳定性。  相似文献   

14.
针对强动力条件下煤柱的稳定性和合理留设问题,以高家堡煤矿204工作面为研究背景,采用理论分析和数值模拟相结合的方法,对比分析了4~30 m煤柱的应力分布和变形破坏特征,确定了留设煤柱宽度为6 m。通过分析变形特征和支承压力分布特征,将煤柱稳定状态分为破裂区、卸载区、弹性区3个区;分析认为,宽度合理留设应考虑使巷道处于应力降低区、煤柱自身稳定性、有利于提高煤炭采出率、满足隔离采空区需要的4大原则。现场实践表明,巷道掘进采用该煤柱宽度之后,巷道浅部围岩变形量小且易于控制,取得了良好的施工效果,既提高了煤炭回采率又便于防冲安全管理。  相似文献   

15.
为确定某矿3303工作面不规则煤柱处于两侧采空状态时的稳定程度,通过数学模型对不规则煤柱最小安全尺寸及煤柱稳定性系数进行计算,在此基础上,以数值模拟对不规则煤柱两侧采空状态下的应力变化规律展开分析。结果表明:煤柱最小安全尺寸为31.2 m,大于3303工作面推进36.5 m范围内不规则煤柱尺寸;煤柱稳定性系数为1.14,根据煤柱稳定性判别指标判定煤柱为稳定状态;不规则煤柱应力随工作面推进距离增大呈上升趋势,最大应力值与理论计算煤柱承载强度最小值基本一致;综合评定双侧采空状态下,不规则煤柱能够保持稳定。  相似文献   

16.
为研究上覆不均布采空区下,具有冲击危险工作面区段煤柱布置问题,以某矿I010203工作面为工程背景,通过现场监测、数值模拟、理论分析等方法对工作面区段煤柱冲击危险和合理宽度进行研究。数值模拟和现场监测结果表明,I010203工作面回采过程中,15m宽区段煤柱微震事件频繁、能量剧烈释放,增大了工作面冲击危险;并且15m宽煤柱在工作面回采后不能完全破坏,仍可承受较高应力并向下部煤层传递,增大了下伏煤层回采工作面的冲击危险。数值研究表明,当宽度为0~6m时,煤柱破碎程度较高,不利于隔绝采空区及巷道稳定;当宽度大于10m时,煤柱内出现弹性核区,应力增加迅速,冲击危险性增高;8m宽煤柱是既能隔绝采空区预防瓦斯,又能使应力最低降低冲击危险的临界煤柱宽度,更合理的区段煤柱宽度为8m左右。研究结果可为该矿井接续工作面和相似条件工作面回采的煤柱宽度留设提供理论依据。  相似文献   

17.
为确定深部高应力双巷布置工作面合理巷间煤柱宽度,提高巷道煤柱稳定性及资源回收率,以园子沟煤矿1022101工作面为工程背景,采用现场调研、理论分析、数值模拟的研究方法,掌握巷道巷间煤柱应力分布规律,确定深部高应力巷间煤柱侧向支承压力分布特征,并采用FLAC3D数值模拟分析了工作面多次回采影响下的不同宽度(7m、10m、...  相似文献   

18.
合理尺寸的煤柱既可以保证巷道的稳定性,也可以提高煤炭的回收率.本文以铜川玉华煤矿为背景,通过应力动态监测、理论推导与工程验证相结合的方法确定区段煤柱合理留设宽度.通过对2410工作面进行应力监测,发现相较于采空区侧煤柱,实体煤的承载能力较高,应力增量较大,在采动影响下应力峰值向深部转移时间晚.为进一步确定煤柱具体留设宽...  相似文献   

19.
程宏波  田野 《中国矿业》2022,31(10):110-117
在工作面开采的情况下,末采煤柱宽度的合理留设是保持巷道稳定的关键因素,合理的煤柱留设不仅可以有效提高煤炭资源的回收率,还可以维护大巷的稳定性。本文以串草圪旦煤矿6102工作面为研究对象,运用数值模拟和理论分析相结合的方式,对末采煤柱的留设尺寸进行研究,通过对煤柱进行极限平衡计算,确定合理的煤柱尺寸上下限在15.00~32.54 m之间,并结合数值模拟对末采煤柱宽度为30.0 m、25.0 m、22.5 m、20.0 m和15.0 m等5种方案的巷道围岩应力及塑性区分布状态进行研究,确定了末采煤柱宽度为23 m。此时工作面的超前支承应力对联络巷的影响较小,且煤柱内存在10 m左右的弹性核区,可保证煤柱的稳定性和阻止采空区内的瓦斯涌入联络巷内。研究成果成功应用于工程实践,为类似条件下煤柱留设提供了有益借鉴。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号