首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 140 毫秒
1.
范加锋 《工矿自动化》2023,(2):102-108+124
煤层顶板布置低位巷抽采瓦斯是解决工作面上隅角瓦斯超限问题的重要技术措施,但低位巷大流量混合抽采造成采空区漏风严重,增加遗煤自燃风险。目前针对低位巷布置与抽采流量协同影响采空区遗煤自燃方面的研究较少。针对贾家沟煤矿10106工作面布置低位巷抽采采空区瓦斯的实际情况,采用COMSOL软件建立了非均质采空区三维流-固-热多场耦合数值模型,通过数值模拟分析了低位巷抽采瓦斯诱导采空区遗煤自燃规律,结果表明:低位巷瓦斯抽采能够降低工作面上隅角瓦斯浓度;瓦斯抽采流量与自燃氧化带最大宽度、采空区最高温度呈正比,抽采流量增加,则自燃氧化带最大宽度和采空区最高温度增加,但过高的抽采压力导致上隅角附近空气“回流”至采空区,增加采空区遗煤自燃风险;当低位巷瓦斯抽采流量一定时,内错距越小,则采空区自燃氧化带最大宽度和最高温度越大。结合数值模拟结果与工程实践,确定贾家沟煤矿低位巷内错距为15 m,瓦斯抽采流量为45 m3/min,此时上隅角瓦斯体积分数为0.875%,采空区自燃氧化带最大宽度为59.14 m,有效解决了上隅角瓦斯浓度超限问题,且未显著增大采空区遗煤自燃危险区域。  相似文献   

2.
钻孔抽采能够影响采空区内部风流的运动,从而导致采空区流场发生变化,增加工作面向采空区的漏风,同时钻孔周围呈现负压状态,漏风风流也不断向钻孔周围补充,采空区煤体在漏风集中区域呈现氧化升温状态,存在采空区遗煤自燃问题。针对上述问题,研究了钻孔抽采条件下采空区最优注氮防灭火方案。以白龙山煤矿10201工作面为背景,用数值模拟软件对工作面采空区进行仿真,分析了不同抽采参数下的采空区流场和温度场分布,依据合理钻孔参数确定了最优注氮条件。结果表明:抽采负压为30kPa时瓦斯抽采效果良好,氧化升温带增幅相对较低;钻孔间距为6m时抽采效果佳且工程量较小;进风侧注氮口与工作面距离为75m、注氮流量为1 500m^3/h时,可以很好地缩小氧化升温带宽度并节约成本。实际应用结果表明:综放工作面及上隅角瓦斯体积分数得到了有效控制,均低于1%;抽采管路及上隅角CO体积分数分别低于0.040%,0.032%,采空区煤体未发生自燃,采空区瓦斯抽采和注氮取得了良好的应用效果。  相似文献   

3.
针对白龙山煤矿10201工作面漏风严重和上隅角瓦斯浓度偏高的问题,利用Fluent软件对进风侧不同挡风帘长度下工作面风量和瓦斯浓度、采空区瓦斯分布和自燃氧化带的变化规律进行了数值模拟研究,结果表明:在工作面距进风巷0~80 m范围内,随着挡风帘长度增加,工作面风量逐渐增加;在工作面距进风巷0~190 m范围内,随着挡风帘长度增加,工作面瓦斯浓度逐渐下降;挡风帘可降低采空区回风侧浅部和中部的瓦斯浓度,而对于采空区进风侧和回风侧深部区域,挡风帘会使瓦斯浓度有所上升;在进风侧设置挡风帘会使采空区进风侧自燃氧化带宽度变大、采空区回风侧自燃氧化带宽度减小,且随着挡风帘长度增加,采空区进风侧自燃氧化带逐渐向工作面靠近。根据数值模拟结果,确定合理挡风帘长度为5 m,应用结果表明:挂帘后工作面有效风量增加,瓦斯体积分数平均值为0.521%,降幅达13.5%,一氧化碳体积分数平均值为2.26%,降幅为8.1%,降低了上隅角瓦斯超限和采空区自然发火的危险性。  相似文献   

4.
以成庄矿为例,分析了定向钻进技术在顺层钻孔抽采实体煤、高位钻孔抽采采空区、跨破碎带抽采待掘区域等方面的应用,研究了基于定向钻进技术的综合立体瓦斯抽采模式:针对实体煤层采用顺层递进模块式抽采技术,通过长时间、大范围抽采及预抽模块、掘进工作面、回采工作面的循环递进,实现回采煤量和抽采煤量的良性接替;针对"U"型通风上隅角瓦斯集聚区域采用顶板高位定向钻孔抽采技术,高位定向钻孔通过裂隙带与上隅角构成连通系统,采空区内瓦斯通过裂隙被钻孔抽出,从而降低采空区内瓦斯浓度;针对破碎煤层采用煤-岩-煤型顶板梳状定向钻孔技术,主孔布置于顶板中,钻孔跨越破碎煤体后施工梳状分支钻孔进入煤层,从而掩护下一阶段巷道掘进;针对煤层积水情况采用顶抽气-底排水组合式梳状定向钻孔技术,煤层中积水排采钻孔和顶板中瓦斯抽采钻孔在空间上实现水-气流场联通,煤层孔排水降压后利于顶板孔抽采瓦斯。采用该瓦斯抽采模式后,成庄矿瓦斯抽采率达60%以上。  相似文献   

5.
针对采用常规高位定向长钻孔在工作面初次来压期间瓦斯抽采效果不佳的问题,以中煤华晋集团有限公司王家岭矿12309综放工作面为工程背景,通过物理相似模拟和数值计算分析了初采期综放工作面煤层顶板覆岩结构和裂隙发育规律:初采期的煤层顶板裂隙发育高度低、数量少,随着工作面的推进,顶板裂隙逐步发育,裂隙发育的高度和范围随着推进距离的增加而增大,裂隙最大发育高度约为28m,工作面来压步距约为50m;初采期工作面瓦斯浓度和涌出量较大,沿工作面倾向,瓦斯浓度从20~150架支架逐渐增大,沿工作面走向,由煤壁300mm至后刮板输送机瓦斯浓度逐渐增大,采空区瓦斯涌出量占工作面瓦斯涌出量的50%以上,瓦斯涌出量整体上呈上升趋势,且有明显的阶段性特征。根据现场实际情况和初采期综放工作面瓦斯涌出特征、覆岩结构及裂隙演化规律,对初采期的常规高位定向钻孔的轨迹进行了优化设计,提出了初采期抛物线型高位定向钻孔瓦斯抽采方法。将钻孔的终孔位置设计在煤层里,与采空区直接导通,用于工作面初采期采空区低位瓦斯抽采,解决了初采期常规高位水平长钻孔层位较高的问题。现场应用结果表明:相比于常规高位定向钻孔,采用抛物线型高位定向钻孔可在工作面采空区基本顶初次来压前有效抽采采空区低位瓦斯,瓦斯抽采纯量平均提高了约37%,上隅角和回风流最大瓦斯体积分数均小于0.80%,达到了瓦斯抽采的预期效果。  相似文献   

6.
采空区覆岩断裂带有效抽采层位是布置高位抽采钻孔治理邻近层和采空区瓦斯的基础。基于关键层理论,建立了断裂带有效抽采层位数学模型,确定了有效抽采层位上下边界:有效抽采层位的下边界为采空区垮落带之上的第1层关键层,上边界为采空区上覆岩层高度为10倍采高以下的第1层关键层,有效抽采层位包含下边界岩层,不包含上边界岩层。根据断裂带有效抽采层位数学模型计算得出段王煤矿8+9号煤层断裂带有效抽采层位为煤层顶板上方12.6 m处的中砂岩到39.3 m处的4号煤;根据采空区覆岩断裂带钻孔窥视结果,得出工作面断裂角约为62°,破断断裂带高度范围为煤层顶板上方11.5~40.5 m区域。在段王煤矿进行高位钻孔抽采试验,得出实际的断裂带有效抽采层位为煤层顶板上方13.9 m处的中砂岩到37.4 m处的砂质泥岩。钻孔窥视分析和高位钻孔抽采试验结果均验证了断裂带有效抽采层位数学模型的准确性,研究成果可为高瓦斯和煤与瓦斯突出矿井的高位抽采工程设计提供理论依据。  相似文献   

7.
针对常规顶板高位钻孔因钻孔方位及倾角无法控制而难以钻进至设计层位,且有效抽采孔段较短、易出现抽采盲区、抽采不连续等问题,以王家岭煤矿上隅角瓦斯治理为研究背景,在20103综采工作面回风巷布置1组定向高位长钻孔与4组常规高位钻孔进行瓦斯抽采,对比分析了这2种高位钻孔的瓦斯抽采效果,结果表明:定向高位长钻孔有效抽采孔段长,抽采盲区少,能实现连续抽采;定向高位长钻孔单孔平均瓦斯抽采纯量为2.11m^3/min,最大可达2.9m^3/min,与常规高位钻孔相比平均瓦斯抽采纯量提高了约2.77倍,工作面瓦斯抽采率提高了近2倍,有效抽采时间提高了约3.15倍;仅接抽常规高位钻孔时上隅角瓦斯体积分数为1.0%以上,仅接抽定向高位长钻孔时降至0.6%以下,表明定向高位长钻孔治理工作面上隅角瓦斯具有明显优势。  相似文献   

8.
针对上湾煤矿12401大采高综采工作面采空区煤自燃防治,通过程序升温氧化实验确定CO作为煤自燃预报指标气体,并辅以C2H4来掌握煤自燃情况;在工作面采空区回风侧铺设束管对采空区气体进行监测,根据监测结果划分了采空区自燃"三带":距工作面0~32m处为散热带,32~225m处为自燃带,225m以外为窒息带;依据散热带和自燃带总长度及煤最短自燃发火期,计算出工作面最小安全推进速度约为6.4m/d。该研究结果为工作面防灭火措施制定提供了可靠依据。  相似文献   

9.
段会军 《工矿自动化》2020,46(2):1-5,38
针对传统单一的上隅角瓦斯治理技术不能有效解决高强度开采综放工作面上隅角瓦斯严重超限的问题,以王家岭煤矿为工程背景,提出了利用上隅角插(埋)管和高位定向钻孔对瓦斯进行联合抽采方案。上隅角插(埋)管抽采即在工作面回风巷铺设瓦斯抽采管路,管路沿回风巷走向延伸至上隅角,在管口位置形成稳定负压区抽采上隅角瓦斯,通过抽吸作用形成人工风流,扰动上隅角位置的回旋涡流,降低瓦斯浓度。同时在工作面回风巷开掘钻场,施工高位定向钻孔向工作面切眼方向钻进,通过定向钻进技术使钻孔轨迹在采空区裂隙带内延伸,抽采采空区高浓度瓦斯。应用结果表明,上隅角插(埋)管和高位定向钻孔联合抽采后,瓦斯抽采纯量稳定在3.40~6.20 m 3/min,平均为4.91 m 3/min;工作面上隅角瓦斯体积分数呈阶梯式下降,最终稳定在0.30%~0.52%,平均为0.42%,上隅角瓦斯治理效果显著。  相似文献   

10.
为了提高煤矿高位钻孔抽采瓦斯效率,基于覆岩采动破坏理论和瓦斯运移特征,提出了高位钻孔优势抽采区的概念,即位于冒落带和裂隙带之间的能够保证稳定高效抽采效果的区域。以下沟煤矿作为研究对象,采用数值模拟及现场验证的方法确定了该矿ZF302采煤工作面的高位钻孔优势抽采区,并对其分布规律进行了研究。研究结果表明,ZF302采煤工作面抽采优势区位于顶板垂高为34~57m的区域;抽采优势区中,单孔瓦斯抽采量呈现出先升高、后平稳、再降低的趋势;当终孔高度位于70~57m区域时,单孔瓦斯抽采量从0.66m~3/min逐渐上升至1.48m~3/min,之后在高度57~34m区域内进入平稳区,单孔瓦斯抽采量始终保持在1.0m~3/min以上;高位钻孔终孔位置位于顶板垂高55~65m范围内时,优势抽采区的抽采时间最长,单孔瓦斯抽采量最高;钻孔参数优化后,钻场钻孔数量从28个减少到18个,减少了35.71%;日抽采量从26 008.75m~3提升到31 046.4m~3,提升了19.37%。  相似文献   

11.
西部矿区浅埋厚煤层通常采用抽出式通风方式,地表漏风不仅使风流紊乱,而且其中的O 2贯穿采空区,与采空区遗煤共同作用使其氧化,从而发生煤自燃,并且产生的CO等有害气体超标,严重影响矿井的正常开采。目前一般采用现场实测、理论分析及实验研究方法对地面漏风引起的采空区内煤自燃的气体浓度场和温度场等进行研究,然而地表裂隙漏风自然发火实验复杂程度较高,理论分析及实验研究方法难以从三维角度认识地表漏风对采空区内煤自燃的影响规律。针对上述问题,根据我国西北矿区埋深浅、煤层厚等特点,建立三维数值计算模型,采用数值模拟与现场实测相结合的方法研究了浅埋厚煤层条件下导气裂隙采空区“三带”分布情况及不同工况下采空区O 2浓度场、CO浓度场、温度场、压力场等的分布规律,并采用ZD5煤矿火灾多参数监测装置进行现场验证。结果表明:采空区内“三带”分布规律和O 2浓度场分布受地表漏风影响明显,采空区顶部O 2容易聚集,改变了采空区内气体流场分布规律,采空区内高体积分数O 2(体积分数为18%~23%)聚集范围为沿采空区走向0~270 m、沿采空区竖直方向3~20 m,特别是在沿采空区走向0~80 m、沿采空区竖直方向3~8 m空间O 2充足、有一定遗煤且热量不容易散失,该区域煤自然发火危险程度较高;采空区内回风隅角压力最小,为-10 Pa,回风口压力最低,进风口压力最大,沿倾向、竖直方向及走向压力均逐渐增大;采空区内温度和CO分布规律类似,在采空区底部受顶部漏风影响很小,主要受工作面进风隅角影响,热量积聚和CO聚集规律与不漏风时基本一致,而从采空区中部开始,温度和CO主要受顶部漏风影响,在中部区域温度和CO均呈现“O”形圈分布,采空区顶部,温度和CO在每个断裂带与采空区交接处达到极大值,并向两侧递减,在最深部的断裂带与采空区交接处出现最大值。  相似文献   

12.
为解决大黄山煤矿735综采工作面回采期间瓦斯超限问题,分析了工作面瓦斯涌出的主要来源,提出采用瓦斯分源抽采技术抽采瓦斯的方法,即优化抽采管路,通过穿层钻孔直接抽采采空区瓦斯,实现采空区与本煤层瓦斯分源抽采。应用结果表明,实施瓦斯分源抽采后,工作面回风流瓦斯体积分数稳定在0.36%~0.46%,上隅角瓦斯体积分数稳定在0.4%~0.6%,瓦斯抽采率平均值达59.17%。  相似文献   

13.
为了防止煤层瓦斯抽采钻孔时因煤粉自燃而导致一氧化碳浓度过高和瓦斯爆炸,设计了矿用打钻防着火安全保护装置。该装置通过传感器监测一氧化碳和瓦斯浓度,采用单片机实现高压风和压力水的自动转换控制。现场试验显示,在打钻期间钻孔煤粉发生自燃的情况下,该装置可以实现高压风和压力水的自动转换,及时将钻孔内燃烧的煤粉熄灭。  相似文献   

14.
针对目前高瓦斯煤巷长距离掘进工作面瓦斯治理措施存在成本高、因回风流瓦斯体积分数高而影响掘进速度等问题,提出在长距离掘进工作面应用短钻孔快速抽采工艺,即利用检修班时间采用短钻孔进行掘进工作面快速集中抽采,通过短时间、高强度抽采小范围瓦斯,减小掘进工作面及回风流通风压力,提高煤巷掘进速度。短钻孔快速抽采工艺从时间和空间上克服了现有技术的不足,将掘进工作面长距离长时间瓦斯抽采变为短距离短时间的高效抽采。在山西霍尔辛赫煤矿3605回风巷的应用结果表明,应用短钻孔快速抽采工艺可在控制回风流与工作面瓦斯体积分数和成本的前提下,将煤巷掘进月累计进尺由170 m提高到250 m,提高了近50%,实现了对低透气性煤层长距离掘进工作面瓦斯的有效治理。  相似文献   

15.
针对采用单一顺层普通钻孔或定向钻孔预抽煤巷条带瓦斯时存在普通钻机施工长钻孔易偏离轨迹、定向钻机施工成本较高等问题,以青龙煤矿21601掘进工作面为研究背景,提出了采用普通钻孔和定向钻孔联合预抽煤巷条带瓦斯。数值模拟结果表明:单钻孔预抽瓦斯时,抽采初期钻孔终孔位置处钻孔轴向瓦斯压力等值线呈“V”形分布,随着抽采时间延长,瓦斯压力“V”形分布逐渐平滑;钻孔径向瓦斯压力以钻孔为中心呈环状依次向外递增;预抽93 d时的有效抽采半径达3.80 m;普通钻孔和定向钻孔可分别有效控制煤巷两帮15 m和煤巷掘进工作面前方200 m范围内瓦斯。现场应用结果表明:普通钻孔和定向钻孔联合预抽时,瓦斯抽采总量平均值为19.86×10^3 m^3,瓦斯抽采体积分数平均值为53.5%,瓦斯抽采纯流量平均值为1.97 m^3/min,瓦斯抽采混合流量平均值为3.68 m^3/min,残余瓦斯含量小于8 m^3/t,瓦斯抽采效果良好。  相似文献   

16.
贵州省煤矿地质构造复杂、瓦斯含量高、煤层松软,瓦斯治理难度大。为了提高该区域瓦斯治理水平,在青龙煤矿21601工作面运输巷Y3点向前5~205 m处,利用千米钻机进行长距离顺层条带定向钻孔瓦斯抽采技术的现场应用。通过定向钻进技术和分支孔控制技术保证钻孔轨迹控制精度,避免了盲钻、盲抽等现象。应用结果表明:2次煤样检测得到的瓦斯可解吸量分别为1.7729,2.1913 m 3/t;残余瓦斯含量分别为4.7739,5.1704 m 3/t,均小于8 m 3/t,满足矿井瓦斯抽采的基本要求;平均瓦斯抽采纯量达到1.26 m 3/min,比原来提高了12%;与常规钻孔相比,采用定向钻孔抽采的瓦斯体积分数提高了50%,瓦斯治理效果显著。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号