首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
分别以高比表面积(860 m~2/g)活性炭和煤粉为原料,辅以煤沥青、羧甲基纤维素(CMC)为粘结剂,聚乙烯醇缩丁醛(PVB)为造孔剂,采用压膜成形和焙烧工艺制备活性炭基炭膜(ACM)和煤基炭膜(CM),借助SEM、TG和电化学工作站等手段对炭膜结构与性能进行了表征.同时,采用溶胶-凝胶法制备TiO_2/ACM和TiO_2/CM复合膜电极,探索其电催化水处理性能.结果表明,改变造孔剂含量可以有效调控炭膜孔径尺寸及分布,所制备微孔炭膜孔径范围0.16~0.82μm.与TiO_2/煤基炭膜(TiO_2/CM)复合膜电极相比,TiO_2/ACM复合膜电极具有更高的比表面积(55.9 m~2/g)、更优的电化学活性和电催化效率.以TiO_2/ACM复合膜电极为阳极构建电催化膜反应器(ECMR)对苯酚废水(COD为2 450 mg/L)处理,当电流密度为1 mA/cm~2、停留时间为12 min时,COD去除率高达92.4%.  相似文献   

2.
以酚醛树脂为炭前驱体,KOH作活化剂,通过调节炭化温度在相同活化条件下制备了具有不同孔隙结构的活性炭材料.N_2吸附测试表明随着炭化温度降低,活性炭材料比表面积先增大后减小,孔容则不断增大.其中,550℃炭化样品与KOH反应活性最佳,可制得比表面积为2983m~2/g,总孔容为1.58cm~3/g,中孔孔容达到0.59cm~3/g的活性炭材料.采用直流充放电法、交流阻抗法和循环伏安法测定以上述多孔炭为电极材料的双电层电容器的电化学性能,结果表明,PF550活性炭材料电容性能最佳,在有机电解液中100mA/g充放电时,比电容达到160F/g,电流密度增大50倍容量保持率达到82%,显示出良好的功率特性;活性炭材料中存在一定比例的中孔不仅可以改善电极材料的功率特性,而且可以提高微孔的利用率.  相似文献   

3.
本文通过电泳沉积法,将二维MXene纳米片负载到活性炭基微孔炭基膜上,制备负载MXene的炭膜(MXene/C),然后采用扫描电子显微镜(SEM)和透射电子显微镜(TEM)对原始炭基膜和MXene/C膜进行表面微观形貌分析,通过X射线衍射仪(XRD)和X射线衍射光电子能谱仪(XPS)进行化学晶型分析和元素价态分析,使用全自动接触角测量仪以及电化学工作站对原始炭基膜和MXene/C膜表面的亲水性和电化学性能进行分析,将炭膜和MXene/C膜为阳极分别构建电催化膜反应器(ECMR)用于电催化氧化降解盐酸四环素(TCH)废水,并对其降解效果进行比较.结果表明:MXene纳米片负载到炭膜表面,成功制备出MXene/C膜,与原始炭膜相比MXene/C膜的亲水性、电化学活性均有显著提升.在温度为20℃,停留时间为8 min, TCH废水浓度为50 mg/L,pH为7.0,电流密度为0.6 mA/cm2,电解质Na2SO4浓度为15 g/L的反应条件下,原始炭膜和MXene/C膜对TCH的去除率分别为86.4%和97.76%,TOC去...  相似文献   

4.
超临界水和水蒸气活化制备酚醛树脂基活性炭的对比研究   总被引:2,自引:3,他引:2  
采用一种新型的活化技术——超临界水活化(650℃,32Pa)和传统的水蒸气活化(800℃)来制备活性炭。用氮气吸附法表征活性炭样品的孔结构,在差热/热重分析仪上考察了原料的热失重行为,对比研究了超临界水和水蒸气活化对酚醛树脂基活性炭孔结构的影响,并探讨了酚醛树脂基炭的炭化程度对活性炭孔结构的影响。研究结果表明:(1)超临界水活化有益于中孔的发展,而水蒸气活化有益于微孔的发展。(2)炭化程度较低的酚醛树脂基炭,在较低的活化烧蚀率时就能得到高比表面积和较高中孔率的活性炭。  相似文献   

5.
以酚醛树脂为碳前驱体,两亲嵌段共聚物F127为软模板,在碱-酸体系条件下合成非支撑介孔炭膜。通过扫描电镜(SEM)、透射电镜(TEM)、低温氮气吸附-脱附和气体分离测试对炭膜的形貌、孔结构以及气体分离性能进行了测试和表征。结果表明,通过改变软模板剂F127的用量和炭化温度可以实现对炭膜孔结构的控制制备。随着F127与苯酚质量比的增大,炭膜的比表面积、总孔容以及平均孔径呈先增大后减小的趋势;在质量比为1.06时,比表面积达467 m2/g,介孔率为31.3%。随炭化温度由600℃升高至800℃时,炭膜的孔结构由无规则的蠕虫状孔结构转变成丰富的二维六方孔道结构。炭膜厚度约300μm,对CO2和N2具有良好的分离性能,CO2/N2分离系数可达2.53。  相似文献   

6.
以聚氨酯为骨架,在泡沫成型过程中加入颗粒活性炭,经炭化得到孔结构发达的聚氨酯泡沫炭,以其为基底采用浸渍法制备出TiO_2负载的具有光催化性能的复合材料。采用SEM观测不同活性炭量泡沫炭的表面形貌;采用BET吸附-脱附等温曲线考察制备不同的泡沫炭及复合材料的孔径结构;XRD分析不同产物的晶型结构;TG分析碳骨架热分解过程。以气相甲醛为模型物,评价泡沫炭/TiO_2复合材料在紫外灯光下对甲醛气体的光催化降解性能。结果表明,聚氨酯泡沫炭/TiO_2复合材料具有良好的催化降解甲醛功能,是吸附与降解协同作用的结果;当活性炭含量为35%,TiO_2的负载量为2%时,对甲醛吸附降解能力最好,达到85.3%。  相似文献   

7.
聚氨酯酰亚胺-聚酰亚胺嵌段共聚物制备炭膜   总被引:1,自引:0,他引:1  
利用傅立叶变换红外光谱(FTIR)跟踪不同温度下聚氨酯酰亚胺(Poly-urethane-imide.PUI)-聚酰亚胺(polyirnide,PI)共聚物(PUI-PI)的热解反应过程,扫描电镜(SEM)表征所制炭膜的结构形貌,N2吸附仪测定计算微孔炭膜的表面积和微孔体积,结合不同PI-PUI体系的炭化收缩率、微孔炭膜水通量的分析,研究了南PI-PUI制备微孔炭膜时不同嵌段的热稳定性及其梯度炭化成孔特性.结果显示:氨基甲酸酯基团在200℃~300℃温间分解,酰亚胺基团在500℃~700℃温间热解,分别为炭膜贡献了大孔和微孔;PUI前驱体的加入能有效降低炭膜的收缩率;外加炭黑对减少炭膜的收缩也有一定的作用,并能显著提高炭膜的微孔体积和总孔体积.  相似文献   

8.
以苯酚、甲醛为原料,利用水热合成法制备酚醛泡沫前驱体,经炭化和KOH活化后制备具有高比表面积的多孔炭PAFc。采用X射线衍射、扫描电镜和N2吸附-脱附等方法对多孔炭进行表征。结果表明:当炭化温度为800℃、活化比例为1∶2时制备的多孔炭含有丰富的孔结构和高比表面积(1692.24m2/g)。此外,多孔炭也表现出优异的电化学性能,电流密度为1A/g时多孔炭的比电容达255.6F/g,循环5000次后,电容保持率为97.3%。  相似文献   

9.
以金属框架有机物为模板,酚醛树脂为碳质前躯体,合成系列微孔炭。合成的微孔炭比表面积可达2 368 m2/g;在300 K常压条件下,该材料对CO2的饱和吸附量为2.9mmol/g。通过调节碳质前躯体的配比和老化时间,可以控制微孔炭的孔结构;在炭化过程中,挥发逸出的Zn也对基体碳发挥协同活化功能,进而使微孔炭的微孔含量提高。微孔炭对CO2的饱和吸附量随其比表面积的增加而增大。  相似文献   

10.
以酚醛树脂、聚乙烯醇和糠醛的混合物包覆玻璃纤维,经炭化和氯化锌活化制备出一种廉价的纤维状活性炭材料。表征了这种纤维状活性炭材料的表面形态、微晶结构、孔结构、表面化学特征和机械强度,评价了该材料的吸附性能。结果表明,在炭前驱体中加入聚乙烯醇和糠醛可以有效促进孔隙的发育,提升所制备多孔炭材料的孔隙率。当在前驱体中加入聚乙烯醇和糠醛时,所制多孔炭材料的比表面积可达2 023 m~2/g,否则其比表面积则仅为404 m~2/g。聚乙烯醇的加入提高了氯化锌的溶解性,促进了炭前驱体的活化;而糠醛与酚醛交联结构的形成则提高了炭前驱体的热稳定性,提高了炭得率。这两方面的措施均有利于提高样品的比表面积并降低其制备成本。该纤维状活性炭材料具有与传统活性炭纤维相似的微晶结构和吸附性能。  相似文献   

11.
添加致孔剂制备树脂基活性炭及电容性能研究   总被引:1,自引:0,他引:1  
苏芳  孟庆函  宋怀河 《功能材料》2007,38(1):97-100
以碱性条件下合成的热固性酚醛树脂(PF)为原料,聚乙烯醇缩丁醛(PVB)和聚乙烯二醇(PEG)为致孔剂,采用聚合物共混炭化活化法制备双电层电容器用活性炭材料.通过热重(TG)分析探讨了PF,PF与PVB、PEG的共混物在炭化过程中的热解行为.考察了活化温度和活化时间对所得活性炭的收率、BET比表面积、孔径分布和比电容的影响,并进一步探讨了以这种活性炭材料作电极的双电层电容器的电容性能.结果表明,随着活化温度的升高,活化温度对活性炭收率的影响更为显著,所得活性炭的收率下降.聚合物PEG较PVB更适合作为成孔剂来控制活性炭的中孔孔径分布.酚醛树脂基活性炭电极比电容在850℃活化1 h为79.2F/g,而聚乙烯二醇/酚醛、聚乙烯醇缩丁醛/酚醛混合树脂基活性炭电极比电容则分别高达130.5和145.6F/g.  相似文献   

12.
以中间相沥青(Mesophase pitch,MP)为前驱体、KOH作为活化剂,分别采用直接活化法、预炭化活化法制备出活性炭(Activated carbons,ACs).采用N2吸附法对所制ACs的比表面积、孔径分布进行分析.将所制ACs应用于电化学电容器电极材料,进行恒流充放电、循环伏安电化学分析.结果表明:电极的电化学性能不仅受活性炭比表面积、孔结构的影响,也与活性炭的微观形貌有关.其中预炭化活化法ACs颗粒具有片层结构,更有利于炭电极与电解液的浸润,提高微孔比表面积对比电容的贡献.  相似文献   

13.
预炭化对KOH活化石油焦的结构及电容性能的影响   总被引:3,自引:0,他引:3  
以不同温度炭化的石油焦为原料、KOH为活化剂制备电化学电容器用炭电极材料. 采用XRD、TEM和N2吸附法对前驱体及活化产物的结构进行了表征, 并考察了样品的电化学性能. 结果表明: 通过调整前驱体的预炭化温度, 可实现对石油焦基活性炭的微晶结构和孔结构的调控, 分别制得无晶体特性的高比表面积活性炭和由大量类石墨微晶构成的低比表面积活性炭. 低表面积活性炭依靠充电过程中电解质离子嵌入类石墨微晶层间而实现能量存储, 具有比高比面积活性炭高10倍的面积比电容和更大的体积比电容.  相似文献   

14.
以丝瓜络作为前驱体,KOH为活化剂,在不同温度下炭化、活化制备活性炭,并将其作为超级电容器电极材料。采用N2吸附及电化学测试对活性炭的孔结构和电化学性能进行了表征,研究了炭化温度、碱炭比对活性炭电极材料孔结构和电化学性能的影响。结果表明:丝瓜络经过一步炭化即可制备出电化学性能优异的炭材料,经过KOH活化后比电容明显增加,在碱炭比为2时制备活性炭的比表面积、总孔容分别达到1549m2/g和0.901cm3/g,比电容达到228F/g,是未活化炭化物比电容的2.5倍,是一种理想的电极材料。活性炭作为电极材料,其比表面积存在一个最佳值,孔的容积、大小和形状对电解质离子的储存、扩散有着重要作用,对电化学性能有很大影响。  相似文献   

15.
在600℃~1100℃对聚偏二氯乙烯(PVDC)树脂仅进行炭化处理,制备了一系列PVDC基活性炭.由TG、XRD和N_2吸附等温线(77 K)分别测定了PVDC基炭经历的热解过程与其晶型、比表面积和孔结构;采用循环伏安、交流阻抗和恒电流充放电考察了它们在质量分数30%的 KOH水溶液中的电容特性.结果表明:PVDC基炭属于无定形碳,其大的比表面积(874.5m~2/g~969.2m~2/g)和丰富的微孔在固相炭化过程中形成;PVDC基炭具有适于双电层形成的优异孔径分布、高的质量比电容和面积比电容;900℃炭化的PVDC基炭具有最高的比电容值和良好的功率特性,50mA/g电流密度时的放电比电容达256.9F/g,5000mA/g电流密度时的放电比电容保持率达76.5%;提高炭化温度可提高PVDC基炭的电导率,降低电解质离子在孔内的扩散阻抗,改善双电层电容器的功率性能.  相似文献   

16.
以煤为原料,与粘结剂混合后经挤压成型、炭化制备煤基管状炭膜.通过选用不同的煤种及加入模板剂对煤基炭膜的孔结构进行调控,并将其用于C/C复合气体分离膜支撑体及处理钛白废水、含油废水.结果表明:以煤基管状炭膜为支撑体,分别以聚醚砜酮(PPESK)和聚糠醇(PFA)为前体,采用浸渍涂膜法制备的气体分离用C/C复合膜,在25℃时H2/N2,O2/N2,CO2/N2的分离系数分别为104.3,13.7,21.8及347.0,12.5,31.4.经煤基炭膜处理后,钛白废水渗透液中TiO2的浓度为0.04 mg/L,TiO2的截留率为99.99%;含油废水的除油率可达到97%以上,渗透液中含油量小于10 mg/L.  相似文献   

17.
采用酚醛树脂(PF)为热稳定聚合物, 端环氧基的聚合物(QS)为热不稳定聚合物, 利用聚合物共聚炭化法制备多孔炭。经红外光谱分析及热重分析证实, 在酚醛树脂与QS的共聚固化物中, QS链段上的环氧基与酚醛树脂链段上的酚羟基发生反应生成醚键, QS接枝到酚醛树脂的链段上。BET比表面积、孔结构和电化学性能分析表明: 在共聚固化物PF/QS的炭化过程中, QS的热解逸出能起到造孔作用, 并随着QS用量的增加多孔炭的比表面积先增大后减小。QS加入量为15%的多孔炭具有最大的比表面积609.0 m2/g、总孔容0.28 cm3/g和微孔孔容0.22 cm3/g, 与聚合物共混炭化法相比, 在相同热不稳定聚合物加入量条件下, 多孔炭的比表面积和孔容都有所提高。该多孔炭电极在30wt% KOH电解液中的比电容达177.5 F/g, 具有良好的电容特性。  相似文献   

18.
热固性酚醛树脂基微滤炭膜的制备   总被引:2,自引:0,他引:2  
实验合成了球形热固性酚醛树脂微粒,并以此为原料制备了微滤炭膜.炭膜的孔径分布结果表明,在原料粒度较小的情况下,所制得的炭膜孔径分布较窄,平均孔径和气体透量较小.对几种常见的粘结剂进行了筛选,当以甲基纤维素为粘结剂时,随着甲基纤维素用量的增加,微滤炭膜的孔径分布变窄,平均孔径及气体透量减小.炭化条件中炭化终温对炭膜性能的影响较大.  相似文献   

19.
以煤基炭膜为基膜,采用三电极体系的电化学沉积策略制备了NiCoP/炭电催化膜.通过XRD、SEM、XPS与EDS对NiCoP/炭电催化膜的形貌、结构与元素含量进行了分析,并考察了电催化膜对溴甲酚绿的去除效果.结果表明,NiCoP催化剂均匀担载在煤基炭膜表面;当外加直流电压为2.5 V时,新型NiCoP/炭电催化膜对溴甲酚绿去除率维持在88.46%,表现出良好的染料废水处理性能与可重复使用性能.  相似文献   

20.
以ZIF-8为掺杂剂,通过对混合基质聚合物膜高温炭化制备了混合基质炭膜.通过XRD、SEM、N2吸附等表征方法探究了ZIF-8高温热解前后微观形貌和孔结构特征对炭膜微孔结构和炭结构的影响,并考察了ZIF-8掺杂量与炭化温度对混合基质炭膜C3H6/C3H8渗透分离性能的影响.结果表明,ZIF-8经550℃热处理后仍能够部分保持其微观形貌和孔结构,同时ZIF-8热解衍生多孔炭的引入增加了炭膜具有筛分功能的极微孔含量,因而显著提高了混合基质炭膜对C3H6/C3H8的分离选择性.在ZIF-8掺杂质量分数1%和炭化温度550℃下,所制备ZIF-8混合基质炭膜的C3H6渗透系数高达174 Barrer, C3H6/C3H8分离选择性为14.4,与未掺杂的纯炭膜相比(C  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号