共查询到20条相似文献,搜索用时 78 毫秒
1.
针对油田局域网络环境中,传统基于流量的分析方法无法实现应用系统的有效识别问题,本文设计一种面向不平衡数据集的应用系统识别框架WEBCLA,该框架采用基于基尼增益的SMOTE改进算法(GSMOTE)与XGBoost分类算法相结合的方式对基于网页的应用系统进行有效识别。具体地,本文提出的GSMOTE算法对少数类进行过采样,有效缓解识别样本不平衡问题,并结合XGBoost分类算法进行应用系统的识别。通过在真实数据集上进行实验,结果表明,本文提出的方法在召回率上较传统方法有较明显的提升,比普通集成方法提高约112.8%,比未经过采样处理的方法提升约10.8%,可有效解决油田局域网中的应用系统识别问题。 相似文献
2.
针对微博转发预测方法研究中的数据集不平衡问题,提出了一种融合过采样技术和随机森林(RF)算法的微博转发行为预测方法。首先,定义了个体信息、社交关系和微博主题3类与微博转发行为相关的特征,并基于信息增益算法实现了关键特征选取;其次,综合微博特征数据的特点来改进少数类样本合成过采样技术(SMOTE),对原始数据集进行非参数概率分布估计,并根据近似概率分布对数据集进行过采样处理,从而使正反例数据量达到平衡;最后,利用随机森林算法,依据微博转发关键特征进行分类器训练,并利用袋外(OOB)数据误差估计来分析和设置随机森林算法的相关参数。通过与基于决策树(DT)、支持向量机(SVM)、朴素贝叶斯(NB)和随机森林等算法的微博转发预测方法进行对比,所提方法整体性能优于基准方法中性能最优的SVM方法,召回率提高了8%,F值提高了5%。实验结果表明,所提方法在实际应用中能够有效提高微博转发行为预测的准确率。 相似文献
3.
4.
不平衡数据集是指在数据集中,某一类样本的数量远大于其他类样本的数量,其会影响分类结果,使基本分类器偏向多数类.合成少数样本过采样技术(SMOTE)是处理数据不平衡问题的一种经典过采样方法,以两个少数样本对应的线段为端点生成一个合成样本.提出一种基于SMOTE的少数群体过采样方法,改进生成新样本的方式,在合成样本的过程中... 相似文献
5.
由于不平衡数据集的内在固有特性,使得分类结果常受数量较多的类别影响,造成分类性能下降。近年来,为了能够从类别不平衡的数据集中学习数据的内在规律并且挖掘其潜在的价值,提出了一系列基于提升不平衡数据集机器学习分类算法准确率的研究策略。这些策略主要是立足于数据层面、分类模型改进层面来解决不平衡数据集分类难的困扰。从以上两个方面论述面向不平衡数据集分类问题的机器学习分类策略,分析和讨论了针对不平衡数据集机器学习分类器的评价指标,总结了不平衡数据集分类尚存在的问题,展望了未来能够深入研究的方向。特别的,这些讨论的研究主要关注类别极端不平衡场景下的二分类问题所面临的困难。 相似文献
6.
7.
社会发展的同时带来大量数据的产生,不平衡成为众多数据集的显著特点,如何使不平衡数据集得到更好的分类效果成为了机器学习的研究热点。基于此,对目前存在的不平衡数据集分类方法进行综述研究,从不平衡数据采样方法、基于机器学习的改进算法以及组合方法三个层面对目前存在的方法进行全面的梳理与总结,对各方面方法所解决的问题、算法思想、应用场景以及各自的优缺点进行归纳和分析,同时对不平衡数据集分类方法存在的问题和未来研究方向提出一些总结和展望。 相似文献
8.
传统方法在处理不平衡的海量高维数据时存在特征提取困难、检测率低的问题。对此,提出一种先使用基于遗传染色体理论的数据合成过采样技术(NEDIL)平衡原始数据集,再利用基于注意力机制的双向GRU网络流量识别模型识别SSL VPN流量的方法。不仅解决了样本不平衡造成的模型拟合问题,同时能够增强关键特征的区分度,解决一般识别模型无法区分时间序列数据重要程度的差异性的问题。对比实验结果表明,该方法在公开的流量数据集上取得了比当前典型方法更好的识别精度,实现了整体高于92%的应用识别准确度。 相似文献
9.
10.
11.
In the class imbalanced learning scenario, traditional machine learning algorithms focusing on optimizing the overall accuracy tend to achieve poor classification performance especially for the minority class in which we are most interested. To solve this problem, many effective approaches have been proposed. Among them, the bagging ensemble methods with integration of the under-sampling techniques have demonstrated better performance than some other ones including the bagging ensemble methods integrated with the over-sampling techniques, the cost-sensitive methods, etc. Although these under-sampling techniques promote the diversity among the generated base classifiers with the help of random partition or sampling for the majority class, they do not take any measure to ensure the individual classification performance, consequently affecting the achievability of better ensemble performance. On the other hand, evolutionary under-sampling EUS as a novel undersampling technique has been successfully applied in searching for the best majority class subset for training a good-performance nearest neighbor classifier. Inspired by EUS, in this paper, we try to introduce it into the under-sampling bagging framework and propose an EUS based bagging ensemble method EUS-Bag by designing a new fitness function considering three factors to make EUS better suited to the framework. With our fitness function, EUS-Bag could generate a set of accurate and diverse base classifiers. To verify the effectiveness of EUS-Bag, we conduct a series of comparison experiments on 22 two-class imbalanced classification problems. Experimental results measured using recall, geometric mean and AUC all demonstrate its superior performance. 相似文献
12.
13.
不平衡数据分类是数据挖掘和机器学习领域的一个重要问题,其中数据重抽样方法是影响分类准确率的一个重要因素。针对现有不平衡数据欠抽样方法不能很好地保持抽样样本与原有样本的分布一致的问题,提出一种基于样本密度峰值的不平衡数据欠抽样方法。首先,应用密度峰值聚类算法估计多数类样本聚成的不同类簇的中心区域和边界区域,进而根据样本所处类簇区域的局部密度和不同密度峰值的分布信息计算样本权重;然后,按照权重大小对多数类样本点进行欠抽样,使所抽取的多数类样本尽可能由类簇中心区域向边界区域逐步减少,在较好地反映原始数据分布的同时又可抑制噪声;最后,将抽取到的多数类样本与所有的少数类样本构成平衡数据集用于分类器的训练。多个数据集上的实验结果表明,与现有的RBBag、uNBBag和KAcBag等欠抽样方法相比,所提方法在F1-measure和G-mean指标上均取得一定的提升,是有效、可行的样本抽样方法。 相似文献
14.
15.
通过剪枝技术与欠采样技术相结合来选择合适数据,以提高少数类分类精度,研究欠采样技术在不平衡数据集环境下的影响。结果表明,与直接欠采样算法相比,本文算法不仅在accuracy值上有所提高,更重要的是大大改善了g-means值,特别是对非平衡率较大的数据集效果会更好。 相似文献
16.
17.
针对现有煤矿安全监控系统测试方法无法自动添加基础数据的问题,提出一种基于自动化测试工具QTP的煤矿安全监控系统测试方法,介绍了采用QTP自动添加测点数据以及进行自动化功能测试的具体操作步骤。 相似文献
18.
19.
异常用电检测能够及时发现异常用电行为,在减少能源浪费和经济损失的同时能够维持安全、稳定的电网运行环境。智能电表的普及使得用电数据获取十分容易,为数据驱动的异常用电检测方法提供了充足的数据支持。然而,在实际应用过程中,异常数据较少导致的数据非均衡问题严重影响了模型的训练效果。因此,针对上述问题提出了一种针对非均衡数据的门控循环单元异常用电检测方法。该方法利用边界合成少数类过采样技术实现了对少数类数据的有效扩充。为了更好的捕捉用电数据的时序特征,采用了门控循环单元实现对用电数据的分类。为了验证该方法的有效性,基于非均衡数据集进行了对比实验。实验结果表明,该方法能够更好的数据扩充效果以及更准确的异常用电检测效果。 相似文献