首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
《煤炭技术》2017,(9):59-62
为了分析煤矿采动区对邻近煤层气井的产能影响,对樊庄区块西南部煤层气井的物性特征和产能特征进行了研究。研究表明:随着距煤矿采动区距离的增加,煤层的含气量逐渐增大,渗透率逐渐下降;根据采动区邻近煤层渗透率变化和煤层气井的产能特征,将采动区周围区域划分为4个区域,并提出了产能控制模式。煤炭和煤层气协调开发过程中,建议在Ⅱ、Ⅲ区布置煤层气井,有利于煤层气的高效开发。  相似文献   

2.
为定量判识煤体结构,研究韩城H3井组煤体结构分布特征,在分析钻井取心资料的基础上,结合不同煤体结构煤层测井响应特征的差异,建立了煤体结构指数N和深侧向电阻率与微球聚焦电阻率比值R(LLD/MSFL)双参数判识煤体结构的方法。依据该反演模型完成29口井的煤体结构测井解释,厘清煤体结构纵向分布特征。进一步借助Petrel2015地质建模软件,采用随机建模方法实现了煤体结构空间分布特征的三维可视化。结果表明:在5号煤层中,N40且R81为Ⅰ类煤(原生-碎裂煤),N42且82R108为Ⅱ类煤(碎裂-碎粒煤),65N95且R95为Ⅲ类煤(碎粒-糜棱煤);在11号煤层中,N42且R70为Ⅰ类煤(原生-碎裂煤),28N47且72R110为Ⅱ类煤(碎裂-碎粒煤),55N89且49R99为Ⅲ类煤(碎粒-糜棱煤)。韩城H3井组5号煤层煤体结构主要以Ⅲ类煤和Ⅰ类煤为主,分别占43%和37%,Ⅲ类煤主要分布于研究区东北侧,Ⅰ类煤分布于研究区西侧和东南侧,Ⅱ类煤仅占9.2%,还有少部分夹矸(占10.9%),厚度较薄; 11号煤层煤体结构主要以Ⅰ类煤为主,约占62%,厚度较厚,Ⅱ类煤和Ⅲ类煤较少,各占20.6%和12.1%,其中Ⅱ类煤主要分布于研究区东部,Ⅲ类煤主要分布于研究区中部,二者厚度较薄,夹矸相对较少(占5.5%)。总体来看韩城H3井组5号煤层较11号煤层受构造影响大,煤体破碎严重,构造煤发育,对煤层气开采不利。  相似文献   

3.
以沁南东区块3#煤层为研究对象,基于煤层气井钻井取心描述结果,获得构造煤垂向与平面分布特征,阐述了构造煤发育特征对煤层渗透率的影响。结果表明:平面上,构造煤主要沿断层发育,距离断层越近构造煤发育程度越高,原生结构煤主要发育于两断层条带之间距离断层相对较远的区域;垂向上,碎粒结构煤和糜棱煤靠近煤层直接顶底板发育,而碎裂结构煤多位于煤层中部。沁南东区块3#煤层西北部、中部和南部渗透率明显较高,并向西南、东南和东北方向递减。原生结构煤和碎裂结构煤共同影响了3~#煤层渗透率,二者处于弹性、弹塑性应变阶段,割理、裂隙的发育程度较高,有利于提高煤层渗透率。  相似文献   

4.
根据不同煤体结构的测井响应特征,对研究区的煤体结构进行定量识别、精细描述,通过钻井取心结果进行验证,利用单层产气效果和每米煤厚的产能贡献指标,对研究区不同煤体结构煤层的开发效果进行评价并提出开发建议。结果表明:测井响应的补偿声波、补偿密度及井径测井值得到的煤体结构指数可以对煤体结构进行定量识别,研究区煤体结构指数小于500为原生结构煤,大于600为构造煤;研究区内Y1井原生结构煤、碎裂煤每米煤厚的产能贡献为600~1 200 m3/m,构造煤的产能贡献低于500 m3/m,产能贡献随着煤体结构指数的增加而降低;在目前的开发技术条件下,不适宜直接对构造煤进行煤层气开发。  相似文献   

5.
为了掌握潞安矿区3号煤层储层特征及瓦斯赋存规律,从煤层埋深、煤变质程度、煤层渗透性、煤的吸附特性、煤体结构等方面系统分析了煤储层特征,在此基础上着重对煤层瓦斯含量与煤层埋深、煤变质程度、煤层水分和灰分的定量关系进行分析,建立了煤层瓦斯含量模型,得到了煤层瓦斯含量的分布规律。结果表明:潞安矿区3号煤层厚度大,赋存稳定,埋藏深度大,变质程度高,Langmuir体积较大,Langmuir压力较小,有利于瓦斯在煤层中富集成藏;矿区内多发育碎裂煤和碎粒煤,局部存在糜棱煤,煤体结构破碎,煤层渗透性较差,瓦斯抽采利用难度大;各区块在相同煤层埋深条件下,南部长治区块瓦斯含量最大,北部襄垣区块瓦斯含量次之,中部潞安区块瓦斯含量最小。  相似文献   

6.
焦殿志 《煤矿安全》2011,42(5):126-128
以瓦斯地质理论为基础,研究了皖北矿区五沟矿瓦斯风氧化带的界限、构造煤发育规律,进行了煤与瓦斯突出危险区划分。以煤层瓦斯成分和瓦斯含量为指标确定煤层瓦斯风氧化带界限,煤层底板标高-200~-330 m以浅为煤层瓦斯风氧化带;构造煤分布,区域上分区分带,层域上具有分层特征。煤与瓦斯区域突出危险性预测的瓦斯含量临界值定为7 m3/t,低于《防治煤与瓦斯突出规定》的8 m3/t;煤层底板等高线-450 m以浅,为低瓦斯区,矿井深部,向斜轴部,构造煤发育,瓦斯含量>7 m3/t,具有煤与瓦斯区域突出危险性。  相似文献   

7.
在煤层气开发过程中,地质条件不仅是煤层气开采的先决条件和地质保障,也直接影响了水力压裂施工,从而影响煤层气井的产能。以沁水盆地柿庄南区块施工参数相近的34口煤层气井为例,从地应力条件、煤体结构和煤层顶底板岩性组合3个方面具体分析了地质因素对煤层气井水力压裂效果的影响,进而对研究区压裂效果进行评价。结果表明:三向地应力的大小关系控制裂缝的延伸方向和缝长,煤体结构类型决定能否形成有效裂缝,煤层顶底板砂岩、泥岩厚度及比例影响裂缝能否穿透隔水层。应力比越小、水平主应力差系数越大、煤层中原生结构煤比例越高、煤层顶底板的泥岩隔水层厚度及比例越大,水力压裂效果越好,煤层气井的平均日产气量也越高。综合上述3方面地质因素,研究区中部地区具有易发育垂直裂缝的地应力特征,且煤层的原生结构煤比例和顶底板泥岩比例高,最有利于水力压裂裂缝的形成与延伸,该区域为水力压裂的优选区域。其次为南部及西南部地区,地应力和顶底板条件较好,但煤体结构破坏程度相对较大。研究区北部、东北部及东南部区域由于煤体结构破坏程度大、顶底板封闭性差等因素,在进行水力压裂时应尽量规避。建议在对煤层气井进行水力压裂时应根据煤层气井的地质条件进行压裂方案设计。  相似文献   

8.
沁水盆地高阶煤煤储层为裂隙型储层。因此,煤体结构对储层物性好坏具有很好的指示作用,但目前缺乏简单、实用的煤体结构预测方法。本文以樊庄区块为例,通过岩心观察,对比分析化验资料与井径曲线形态特征,建立了井径曲线与煤体结构的关系。研究表明,樊庄区块3号煤煤体结构主要为原生和碎裂结构,具体可划分为原生、过渡、碎裂三种类型。其中原生型煤层段无扩径现象,平均井径值19.8~24.5cm;过渡型煤层段以原生结构为主,存在局部扩径现象,平均井径值21~28cm;碎裂型煤层段全部为碎裂结构,整个煤层段均存在扩径现象,平均井径值一般大于23.5cm。不同类型的煤体结构对气井产量、煤粉产出有重要的影响。  相似文献   

9.
基于沁水盆地南部樊庄区块煤层气井地质与排采资料,探讨煤体结构差异对煤层气井产能的影响。煤的孔裂隙系统、力学性质的差异对煤层气井开发的各环节有重大影响,这导致相应煤层气井的产能有较大差异。随煤体破坏程度的增加,井径扩径现象凸现,这增加了后期一系列工艺的难度。以原生结构煤和碎裂结构煤为主的煤储层,复合改造和多尺度支撑剂的应用可提升煤储层长期导流能力;以碎裂-糜棱结构煤为主的煤储层,其开发的核心是对煤储层进行卸压改造和保护层开采,以改善煤储层的导流能力。  相似文献   

10.
《煤炭技术》2021,40(7):63-65
以延川南地区古生界含煤地层中煤层气为研究对象,在含煤地层地质特征研究的基础上,对大量测试数据进行系统的统计整理,从煤层厚度、埋深、储层压力、煤体结构、渗透率等方面,分析了煤层气的产能控制因素,认为山西组是主要的含煤地层,也是煤层气的主要赋存层位,一定煤层厚度是煤层气形成的基础;储层压力及解吸压力与煤层气产能呈正相关,埋深过大会影响气产量;块状碎裂煤体及良好的渗透率都是高产的关键因素;结合生产实际,建立了研究区煤层气有利区划分标准,为进一步开发方案的制定提供了依据。  相似文献   

11.
查明余吾矿煤层气井产能的主控因素,可为进一步勘探开发提供指导。根据该矿已有的煤层气勘探开发井资料,从资源开发条件、钻井的井径扩大率、压裂改造效果、排采工作制度等方面分析了关键参数与日产气量的关系,得出了该区煤层气井产能的主控因素。结果表明:煤储层原始渗透率、临储压力比、含气饱和度是该区煤层气井产能的储层地质控制因素;钻井的井径扩大率、压裂改造效果是影响该区煤层气产能的工程控制因素;排采工作制度与产能之间关系不密切。当煤层段煤体结构复杂或碎粒/糜棱煤所占比例较高时,优化钻井参数或改善钻井液性能、优化压裂工艺参数与煤层的匹配性,是实现该区煤层气井产能最大化的重要保障。研究结果为该区煤层气井开发工程指明了方向。  相似文献   

12.
依据韦州矿区煤炭勘探煤层资料、煤层气参数井获取的储层资料,通过对煤层气开发地质信息的有效提取,对韦二煤矿煤储层物性进行深入分析、研究,对煤层气资源量进行了计算,并采用数模方法预测了煤层气抽采率,确定了地面煤层气抽采相对有利区。研究认为:区内煤层含气性整体偏低,煤层甲烷含量在0.20~11.73 m3/t,气含量高值区仅出现在部分煤层、局部区域。多期次构造运动致使裂隙发育复杂化,硬度变小,煤体结构多为碎粒—糜棱结构,渗透率降低。主要可采煤层煤层气资源量为5.55×108 m3,资源丰度为1.51×108 m3/km2,属中等丰度、小型煤层气藏。各煤层煤层气采收率较低,约为15%,可采潜力较差。资源量在煤层分布上相对集中,12、14、15煤层气含量4 m3/t以上重叠区域为煤层气地面抽采相对有利区块。  相似文献   

13.
以樊庄区块16口煤层气井地质资料、排采资料为依据,分析了该区块煤层气井之间产水量和产气量差异的地质影响因素,并进一步探讨了这种差异的地质控制机理。研究结果表明:产水阶段,地下水流体势通过影响煤层水的流向和煤储层含水量控制煤层气井产水量,渗透率通过影响煤层水在储层中的流动能力控制煤层气井的产水量,煤储层渗透率与地下水流体势的负相关性促进了煤层气井之间产水量的差异;产气阶段,排水降压效果通过影响煤层气的解吸量及气、水两相的饱和度和相对渗透率控制煤层气井之间的产水量和产气量差异;另外,煤层气井连通后出现的气水分异现象,进一步促进了煤层气井之间产水量、产气量的差异。  相似文献   

14.
基于松河和织金区块16口煤层气井产出水样品的常规离子,微量元素,氢氧同位素测试,结合其地质背景、产能特征,对比分析了两区块产出水地球化学特征及其对产能的指示意义。研究表明:松河产出水Cl-,Na+质量浓度高度异常,水质为Na-Cl型,表明地层水受压裂液污染;织金产出水来自煤层,Na+和HCO-3富集,水质为Na-HCO3型,反映出较封闭的地下水环境。松河和织金产出水均表现出明显的D漂移特征,且松河区块煤中氢氧同位素组成较重。除Li元素外,松河产出水中大部分微量元素溶出量均大于织金。提出了更具普适意义的反映地层水环境的封闭性指数。封闭性指数和日产气量、累计产水量相关关系显著,中等封闭指数更有利于实现高产,可提取作为评价产能潜力的地化指标,并初步建立了基于HCO-3和Cl-质量浓度的产出水来源判识模板,划分出两个区域:低产井产出压裂液区和高产井产出煤层水区。  相似文献   

15.
柳林地区煤层气井排采过程中产水特征及影响因素   总被引:4,自引:0,他引:4       下载免费PDF全文
以实际生产数据为基础,结合流体包裹体测试分析,从古今水文地质特征、排采模式、压裂工艺等方面综合研究了柳林地区煤层气井排采过程中的产水特征及其影响因素。结果表明:柳林地区煤储层产水特征是多种因素共同作用的结果,山西组煤层顶板砂岩含水层中古流体呈现滞留特征,富水性相对较弱,其现今产水量的高低与岩层中裂隙的发育程度有直接关系。太原组煤层顶板灰岩含水层在早期与地表淡水发生了沟通,富水性较强。当以不同的模式进行排采时,受压裂强度和煤层与顶板含水层差异沟通的影响,表现出D,A,B,C四种模式的产水量逐渐增大的规律。进一步指出,为降低水动力的影响,适当区域可选用水平井开采;煤层气开发由北东向南西逐步推进,有利于煤层的排水降压;储层改造过程中应降低压裂缝的规模,尤其是纵向缝的高度。  相似文献   

16.
沁南西—马必东区块煤层气高效建产区优选技术   总被引:2,自引:0,他引:2       下载免费PDF全文
沁水盆地南部是我国目前规模最大的煤层气生产基地,浅部开发工程布置的逐渐完成,必然要将眼光转向深部,开采难度增大。为此,准确圈定高效建产区尤为重要,沁南西—马必东区块正是如此。面对这一新的技术挑战,分析深部煤储层特点,结合沁水盆地南部前期煤层气井生产实践,首先划分出资源基础、产气条件、储层可改造性3个优选层次,进而从含气性、渗透性、疏导性、可采性四个方面提出了高效建产区优选标准和流程,形成了"三层四性"高效建产区优选技术。研究认为,建产区开发潜力体现为关键地质条件指标的组合,包括高于经济极限的煤储层含气量,单位长度微裂隙总宽度≥50μm,可疏导指数≥30 nm,地应力状态处于垂直应力≥最大水平主应力≥最小水平主应力或最大水平主应力≥垂直应力≥最小水平主应力状态,以原生—碎裂结构煤为主,局部构造相对简单,可动用面积≥30%等。基于这一标准,在沁南西—马必东区块优选出3个高效建产区,部署了5口试采井,获得单井日产气量2 000 m~3以上的实施效果,验证了优选技术方法的可靠性,为沁水盆地深部煤层气区块高效建产区优选提供了技术示范。  相似文献   

17.
煤层气藏的水文地质条件是控制煤层气运移、散失、分布和富集的重要因素之一。以西山煤田古交矿区为研究对象,分析产出水离子浓度、水质水型、矿化度和煤层含气量分布特征,结合地下水动力场分布特征,划分区域水文地质单元,并讨论不同单元内含气量分布特征及地质控制机理。结果表明:(1)该区煤层气井产出水离子以Na~+,HCO_3~-为主,水型主要为NaHCO_3型,该区煤层气井产出水矿化度介于632~2 512 mg/L,属于淡水-微咸水;(2)根据折算水位和矿化度分布特征将矿区划分为补给径流区、滞留区以及过渡地带的弱径流区3种水文地质单元,滞留区含气量最高,弱径流区次之;(3)古交矿区煤层气的富集成藏受构造、水文地质条件双重控制,在屯兰中部形成单斜-水力封堵型煤层气藏,为全区煤层气最为富集区,东曲断层比较发育,形成地垒-水力封堵型煤层气藏,为煤层气较为富集区。  相似文献   

18.
L区块位于鄂尔多斯盆地东南缘,目前处于大井组试采评价阶段,有排采井100余口,其中部分煤层气井排采产水量高,造成液面下降困难、修井作业频繁,导致了排采产气效果不理想。本文深入分析了影响煤层产水的主要因素,5#煤层及顶底板含水性弱,产水量低, 8#煤层顶板存在局部高含水灰岩,通过压裂进一步沟通后是形成高产水井的主要原因。在对8#煤层顶底板含水性识别分析的基础上,采取了差异性的地质选层和压裂工艺等措施。这些认识和措施应用在试采井组生产中,排采实践证实高产水井的数量得到了有效控制,单井平均产水量大幅降低,取到了较好的效果。  相似文献   

19.
高丰度煤层气富集区地球物理识别   总被引:2,自引:0,他引:2       下载免费PDF全文
为预测煤层气富集区,通过地震反演和地震属性分析,获得了煤层含气量、地质构造、煤层厚度、煤层结构、煤层顶、底板岩性和裂隙等地震地质参数,基于地球物理信息融合方法对煤层气富集区进行了预测。研究结果表明:随着埋藏深度增加,煤层厚度增加,煤层含气量呈增加趋势;向斜轴部隆起带煤层含气量大,背斜轴部凹陷区煤层含气量相对较多;构造煤分布区一般煤层气较富集;煤层直接顶底板为泥岩,则煤层含气量一般较高;裂隙的存在会对煤层气含量有一定影响。研究认为,煤层埋深、煤层厚度、结构、构造和顶底板岩性等参数是控制研究区煤层气富集的主要地震地质因素,基于地球物理信息融合对煤层气富集区进行预测,可以避免单一地震地质因素预测的局限性,有助于提高预测精度。  相似文献   

20.
It is of great significance to forecast high yield of CBM wells and analyze dynamic production by having an overall study on the characteristics of the produced CBM and determining the main factors influencing the productivity of CBM. With the test report and the related geological parameters of a single well, methods of combining the productivity data and typical production curves were used to analyze different geological factors and how to influence the capacity of a single layer. Then, the paper proposed a new understanding about capacity characteristics of the study area and geological control factors: First, the Shanxi formation production capacity characteristics was divided into two-stages, showing signs of gas and gas breakthrough for 100 days. Second, two parameters, which include potential of gas production and gas production capacity, were better than the single parameter, such as gas content, coal thickness, and penetration to analyze affecting factors of single well production. Finally, comprehensive analysis concluded that the ratio of critical desorption pressure to reservoir pressure has greater influence on the production of vertical CBM wells. Besides, the potential of gas production capacity has greater impact at stage of showing gas signs; the coal reservoir pressure and gas production capacity have greater impact at stage of gas breakthrough for 100 days. Thus, to seek the coal bed methane with high ratio of critical desorption pressure to reservoir pressure and high yield of gas will be important guarantee to the success of the coal bed methane exploration and development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号