首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 218 毫秒
1.
钒电池是一种高效储能装置,钒电池电解液直接影响电池性能。本文以V2O3、V2O5和H2SO4为原料,化学合成了用于钒电池的V(Ⅲ)-V(Ⅳ)电解液,研究了无水乙醇与焦磷酸钠作为添加剂对电解液稳定性和电化学活性的影响。实验结果表明,当V2O3/V2O5质量比为7.2∶1时,可以得到V(Ⅲ)/V(Ⅳ)离子浓度比为1.0的电解液;添加剂的加入能提高电解液的稳定性和电化学反应活性。  相似文献   

2.
陈孝娥  崔旭梅  王军 《化工进展》2012,(6):1330-1332
钒电池是一种高效储能装置,钒电池电解液直接影响电池性能。本文以V2O3、V2O5和H2SO4为原料,化学合成了用于钒电池的V(Ⅲ)-V(Ⅳ)电解液,研究了无水乙醇与焦磷酸钠作为添加剂对电解液稳定性和电化学活性的影响。实验结果表明,当V2O3/V2O5质量比为7.2∶1时,可以得到V(Ⅲ)/V(Ⅳ)离子浓度比为1.0的电解液;添加剂的加入能提高电解液的稳定性和电化学反应活性。  相似文献   

3.
以V_2O_5为原料,采用化学还原法制备钒电池电解液。对比草酸、抗坏血酸、酒石酸、柠檬酸、双氧水、甲酸、乙酸制备所得钒电池电解液的转化率、还原率及电化学性能,发现草酸制得的电解液转化率及还原率较高,且其电化学活性明显优于其他还原剂。对草酸制备电解液的反应动力学进行分析,发现该反应为放热反应且在常温下能自发进行。对制备过程中的各项参数进行优化,在n(H_2C_2O_4)∶n(V_2O_5)=1∶1、反应温度90℃、反应时间100min、n(H_2SO_4)∶n(V_2O_5)=5∶1的条件下,电解液的转化率与还原率达到了94.80%和93.55%。草酸和VOSO_4制备的电解液电化学分析结果表明草酸制备的电解液能够抑制析氧副反应的发生,具有较大的扩散系数、交换电流密度、电极反应标准速率常数和较小的极化电阻,对电极反应的传质过程和传荷过程有促进作用,提高了电极反应速率。以草酸为还原剂能够在较低温度下高效地制备具有良好的电化学性能及稳定性的钒电池电解液。  相似文献   

4.
为提高全钒液流电池的能量密度和正极电解液稳定性,采用循环伏安、交流阻抗等方法,研究了1-丁基-3-甲基咪唑四氟硼酸盐(BMIMBF4)作为正极电解液添加剂对溶液稳定性和电化学反应活性的影响,并对其机理进行了初步探讨。实验结果表明,添加BMIMBF4后,正极电解液中五价钒离子的稳定性显著提高,电解液的电化学反应活性也有所提升。当添加量为1%时,电池的单位体积电容量比有所增加,并且能量效率有所提升。  相似文献   

5.
《化工进展》2012,31(6)
钒电池是一种高效储能装置,钒电池电解液直接影响电池性能。本文以V2O3、V2O5和H2SO4为原料,化学合成了用于钒电池的V(Ⅲ)-V(Ⅳ)电解液,研究了无水乙醇与焦磷酸钠作为添加剂对电解液稳定性和电化学活性的影响。实验结果表明,当V2O3/V2O5质量比为7.2∶1时,可以得到V(Ⅲ)/V(Ⅳ)离子浓度比为1.0的电解液;添加剂的加入能提高电解液的稳定性和电化学反应活性。  相似文献   

6.
石墨负极的压实密度是影响锂离子电池循环性能和倍率放电性能的主要因素之一。通过研究3种不同压实密度的石墨负极材料的电化学性能,发现随着压实密度的增大,负极极片的吸液时间逐渐延长,电池的内阻也在不断地增加。当负极压实密度为1.7 g/cm3时,锂离子电池的循环性能和倍率性能均为最佳。电池在0.5 C下放电循环500次后的容量保持率为86.8%,3.0 C倍率的放电容量为0.2 C放电容量的95.1%。  相似文献   

7.
四氟草酸磷酸锂主要应用于锂离子电池、锂离子电容器等非水电解液的添加剂或作为新型锂离子电池电解液用盐,能改善电解液的热稳定性和水解稳定性。与六氟磷酸锂相比,四氟草酸磷酸锂具有更好的热稳定性和对水的耐受性,在正极材料表面形成更加稳定的固体电解质界面膜(CEI膜),有效提高电池的高温循环和高温存储性能,因此在高镍、高电压领域有着广泛的应用。本文概述四氟草酸磷酸锂的制备及应用,可供锂离子电池电解液以及锂离子电池开发人员参考。  相似文献   

8.
将Li Fe PO4/C锂离子电池分别在25℃(常温)、45℃、55℃下进行0%~100%DOD、1.0 C充/1.0 C放循环测试。结果显示,随温度的升高,电池的循环性能越差。本试验分别比较了电解液、负极材料对不同温度循环性能的影响。电解液中添加高沸点溶剂和抑制Li PF6分解的添加剂、负极使用小粒径中间相碳微球能够提高电池的高温循环性能。  相似文献   

9.
讨论了锂离子电池充放电过程中有机电解液的电化学行为,研究发现,有机电解液会在电极活性材料表面发生电化学反应而形成聚合物钝化层(SEI膜),其厚度和疏密性与电解液的组成及充放电制度有关;其组成和电化学性能还将直接影响锂离子电池的充放电容量和循环寿命。通过改变电解液的导电锂盐成分、有机溶剂组成和加入极性添加剂等方法可优化电解液的电化学特性,从而可有效控制该钝化层的成膜过程、膜组成与膜结构,提高锂离子电池的充放电及循环性能。  相似文献   

10.
锂金属电池由于具有高能量密度一直受到广泛的关注。然而,目前传统的电解液由于挥发性高,并且与锂金属负极反应产生锂枝晶等问题,使其不能很好的应用于锂金属电池。尿素基深共融体系具有高的离子电导率,良好的热稳定性以及不易燃等优异的特性,目前已经被应用于锂离子电池。基于此,本文尝试将尿素基电解液(Urea/LiTFSI)应用于锂金属电池,并取得了优异的电池循环性能。  相似文献   

11.
研究了添加剂酒石酸、乙二酸、柠檬酸、葡萄糖对钒电池正极液电化学性能和稳定性的影响,并对其规律和机理进行了探讨。CV研究结果表明:含有多个-OH的有机物葡萄糖能明显提高正极液的阳极峰电流,含有多个-COOH的乙二酸能明显提高正极液的阴极峰电流,而含有多个-OH和多个-COOH的酒石酸对正极液的阴、阳极峰电流均有明显提高。同时,酒石酸(含氧官能团-OH和-COOH)能与5价钒作用,阻碍钒离子聚合,从而提高了5价钒的稳定性。交流阻抗测试表明,正极液中添加酒石酸能大大降低电荷传递电阻和溶液电阻,电解液的性能得到了显著提高。  相似文献   

12.
为了提高钒电池电解液的性能,选取了3种复合添加剂,研究了复合添加剂对钒电池正极电解液稳定性和电化学性能的影响。利用电化学方法制备了2 mol/L的全钒液流电池正极5价钒离子电解液,采用临界胶束浓度法得到复合添加剂的配比为:1% KHSO4+3 mmol/L SDBS(十二烷基苯磺酸钠)、1% KHSO4+2 mmol/L D-山梨醇、1% KHSO4+2 mmol/L CTAB(十六烷基三甲基溴化铵),并考察添加剂加入电解液后的稳定性与电化学性能。通过XRD分析手段,对电解液沉淀物的成分进行了表征。研究表明:添加剂的加入,并不会引起钒离子价态的变化,1% KHSO4+2 mmol/L CTAB加入后,电解液峰电位差减小12 mV,峰电流增加9.8 mA,说明CTAB与KHSO4在合适配比下,能够有效提高正极电解液的稳定性及可逆性,添加剂的引入并未引起电解液沉淀物的物相组成变化,电解液性能显著提高。  相似文献   

13.
Fructose, mannitol, glucose, d-sorbitol are explored as additives in electrolyte for vanadium redox battery (VRB), respectively. The effects of additives on electrolyte are studied by cyclic voltammetry (CV), charge–discharge technique, electrochemical impedance spectroscopy (EIS) and Raman spectroscopy. The results indicate that the vanadium redox cell using the electrolyte with the additive of d-sorbitol exhibits the best electrochemical performance (the energy efficiency 81.8%). The EIS results indicate that the electrochemical activity of the electrolyte is improved by adding d-sorbitol, which can be interpreted as the increase of available (–OH) groups providing active sites for electron transfer. The Raman spectra show that VO2+ ions take part in forming a complex with the d-sorbitol, which not only improve solubility of V(V) electrolyte, but also provide more activity sites for the V(IV)/V(V) redox reaction.  相似文献   

14.
非水系氧化还原液流电池(NARFB)的广泛应用受制于其较低的性能。在电解液中加入一些金属离子添加剂是一种可能的解决方案。实验研究了Sb3+离子对低共熔溶剂(DES)电解液液流电池电化学性能的影响。结果表明,添加Sb3+离子可以强化V(Ⅲ)/V(Ⅱ)氧化还原离子对的电化学反应动力学(最高可达22.6%)过程,钒离子在DES中的扩散系数提高了63.3%,并且电荷转移电阻降低了11.9%。场发射扫描电子显微镜表明,Sb3+离子电沉积在石墨毡的表面,对电化学反应起催化作用,从而改善了电化学性能。考虑增强的动力学和降低的活性比表面积之间的平衡,确定了Sb3+的最佳浓度为15 mmol·L-1。此外,当使用含有Sb3+的负极电解液液流电池时,液流电池的功率密度提高了31.2%,从含原始电解质的3.08 mW·cm-2到含15 mmol·L-1 Sb3+离子的4.04 mW·cm-2。这些结果为改善NARFB的电池性能提供了一个便捷而有前景的方法。  相似文献   

15.
Vanadium redox cell electrolyte optimization studies   总被引:5,自引:0,他引:5  
The stability of the positive electrolyte of the vanadium redox cell has been studied at various temperatures and at different solution compositions and solution state-of-charge (SOC). It has been found that at elevated temperatures for extended periods, V(V) can slowly precipitate from solution, the extent and rate of which being dependent on temperature, vanadium and sulphuric acid concentration as well as the SOC of the electrolyte. A H2SO4 concentration of 3–4m has been found to be more suitable than 2m, not only from the point of view of increased stability, but also because of the higher electrolyte conductivity which leads to increased voltage efficiencies during battery cycling.  相似文献   

16.
A novel vanadium bromide redox flow battery employing a vanadium bromide electrolyte in both half-cells has been proposed. Preparation of the electrolyte for this redox cell requires the chemical dissolution of vanadium pentoxide powder in the acidic bromide supporting electrolyte. In this study, the kinetics of the chemical dissolution process were investigated and a second order surface controlled reaction is reported with rate equation given by: Rate = 5 × 10−4(l mol−1 s−1)[Br]2 at 25 °C and an activation energy of 37.2 kJ mol−1.  相似文献   

17.
尤东江  魏建云  李雪菁  娄景媛 《化工学报》2019,70(11):4437-4448
液流电池通常采用对角平推流流场,会形成电解液滞留区,造成电池局部浓差极化大,影响综合性能。鉴于此,提出了一种基于框架设计的流场优化方法,通过设计电极框架,可以得到“蛇形流道”和“平行流道”两类流场。以全钒液流电池为例,通过数学建模,研究了不同流场结构和参数对于多孔电极内电解液流动特性、电化学反应和温度变化特性的影响规律。计算结果与实验结果一致性良好,结果表明:电解液在“平行流场”内的流动均匀性比在“蛇形流场”内好,且不存在滞留区,同时在“平行流场”内浓差极化也较“蛇形流场”低;此外,对于同样的电极面积,在电极内部的“平行流道”越多,电解液的流速分布越均匀,反应特性越好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号