首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this study was to determine whether the administration of high doses of an anti-T-cell receptor (TCR) monoclonal antibody (H57-597) to donor animals could induce a state of T-cell nonresponsiveness and prevent the development of graft-versus-host disease (GVHD) in murine recipients of major histocompatibility complex (MHC)-matched (B10.BR[H-2k] --> AKR/J[H-2k]) and mismatched (B10.BR[H-2k] --> DBA/2[H-2d]) marrow grafts. Transplantation of H57-597-treated B10.BR T cells into irradiated AKR or DBA mice resulted in protection from GVHD, which was otherwise lethal in transplanted recipients receiving untreated T cells. The administration of H57-597-treated T cells did not compromise alloengraftment in either strain combination and was found to accelerate donor T-cell reconstitution in recipients of MHC-matched marrow grafts. Optimal protection for GVHD was dependent on the duration of antibody exposure in donor mice. T cells from donor exposed to antibody for only 1 day caused lethal GVHD, whereas exposure for at least 4 days was necessary to abrogate graft-versus-host reactivity. The ability of antibody treatment to protect against the development of GVHD could not be ascribed to the antibody-induced production of Th2 cytokines, the induction of a T- or non-T-suppressor cell population, or the preferential depletion of CD4+ T cells by H57-597. Donor T cells exposed to H57-597 antibody were detectable in recipients for up to 5 weeks after transplantation, indicating that these cells were not eliminated in the host immediately after bone marrow transplantation and contributed to enhanced donor T-cell reconstitution. Moreover, in B10.BR --> DBA chimeras that did not have any clinical evidence of GVHD, potentially MIs-reactive donor-derived Vbeta6+ T cells were present in the spleens of recipients at comparable numbers to normal mice but appeared functionally nonresponsive in vivo. These data strongly suggested that protection from GVHD was due to the fact that antibody treatment resulted in a state of prolonged T-cell anergy that persisted despite the presence of potential costimulatory signals in the recipient. This observation is of potential clinical significance in that it shows that the prevention of GVHD can be accomplished without posttransplantation immunosuppression or the need for in vitro or in vivo T-cell depletion.  相似文献   

2.
BACKGROUND: Endogenous interleukin (IL)-10 production has been associated with the lack of graft-versus-host disease (GVHD) in human recipients of MHC-disparate donor grafts. Paradoxically, we have shown that the exogenous administration of high doses (30 microg/dose) of IL-10 to murine recipients of MHC-disparate grafts accelerates GVHD lethality. METHODS: The effects of IL-10 on GVHD mediated by either CD4+ or CD8+ T cells was examined in studies involving exogenous IL-10 administration or the infusion of T cells from IL-10-deficient (-/-) donor mice. The role of interferon (IFN)-gamma on IL-10-induced GVHD acceleration was studied using IFN-gamma-deficient (-/-) donor mice or neutralizing monoclonal antibody. RESULTS: IL-10 was found to have a dose-dependent effect on the GVHD lethality mediated by either CD4+ or CD8+ T cells. High doses of exogenous IL-10 accelerated GVHD lethality. IFN-gamma release was not responsible for the IL-10 facilitation of GVHD lethality. Paradoxically, low doses of IL-10 protected mice against GVHD lethality. The GVHD protective effect of the bioavailability of small amounts of IL-10 was confirmed by demonstrating that the infusion of T cells from IL-10 -/- donors accelerated GVHD lethality. CONCLUSIONS: The results suggest that IL-10 has a dose-dependent effect on the GVHD lethality mediated by CD4+ or CD8+ T cells, such that high doses accelerate lethality, while low amounts of bioavailable IL-10 are protective.  相似文献   

3.
Although T-cell receptor (TCR) alpha/beta expressing cells have a well-known role in graft-versus-host disease (GVHD) generation, the role of TCR gamma/delta expressing cells in this process has remained unclear. To elucidate the potential function of TCR gamma/delta cells in GVHD, we have used transgenic (Tg) H-2d mice (termed G8) that express gamma/delta heterodimers on a high proportion of peripheral T cells. In vitro, G8 Tg gamma/delta T cells proliferate to and kill C57BL/6 (B6) (H-2b) which express gene products (T10b and T22b) from the nonclassical major histocompatibility complex (MHC) class Ib H-2T region. The infusion of G8 Tg (H-2Td) TCR gamma/delta cells into lethally irradiated [900 cGy total body irradiation (TBI)] B6 (H-2b) mice resulted in the generation of lethal GVHD characterized histologically by destruction of the spleen, liver, lung, and colon. Lethal GVHD was prevented by the injection of anti-TCR gamma/delta monoclonal antibodies. Immunohistochemical analysis of B6 recipients post-bone marrow transplantation (BMT) confirmed that G8 Tg TCR gamma/delta cells infiltrated GVHD target tissues (skin, liver, colon, and lung) and were absent in recipients treated with anti-TCR gamma/delta monoclonal antibodies (MoAbs) but not anti-CD4 plus anti-CD8 MoAbs. In contrast, injection of TCR gamma/delta+ cells into irradiated (900 cGy TBI) B6.A-TIaa BoyEg mice that do not express either T10b or T22b did not induce lethal GVHD. Similarly, in a different GVHD system in which sublethal irradiation without bone marrow (BM) rescue was used, B6 but not B6.A-TIaa/BoyEg mice were found to be susceptible to TCR gamma delta+ cell mediated GVHD-induced lethality characterized by an aplasia syndrome. These results demonstrate that TCR gamma/delta cells have the capacity to cause acute lethal GVHD in mice and suggest that nonclassical MHC class Ib gene products expressed on GVHD target organs are responsible for G8 Tg TCR gamma/delta+ cell mediated lethality.  相似文献   

4.
Because CD28-mediated T-cell costimulation has a pivotal role in the initiation and maintenance of T-cell responses, we tested the hypothesis that CD28 is critical for the development of graft-versus-host disease (GVHD). We compared the in vivo effects of CD28(-/-) T cells transplanted from B6 donor with the CD28 gene deleted by homologous recombination with those of CD28(+/+) T cells transplanted from wild-type C57BL/6 (B6) donor. Fifty million CD28(-/-) or CD28(+/+) splenocytes from B6 mice were transplanted into unirradiated (B6 x DBA/2)F1 (BDF1) recipients. Unlike CD28(+/+), CD28(-/-) T cells from B6 mice had lower levels of proliferation and interleukin-2 production, had a limited ability to generate cytotoxic T lymphocytes against the recipient, and did not induce immune deficiency, despite survival in the recipient for at least 28 days. The ability to prevent rejection was reduced by the absence of CD28, because as many as 1.0 x 10(7) CD28(-/-) CD8(+) cells were needed to prevent rejection of major histocompatibility complex (MHC) class-I incompatible marrow in sublethally irradiated (550 cGy) bm1 recipients, whereas 8.0 x 10(5) CD28(+/+) CD8(+) T cells were sufficient to produce a similar effect, indicating that CD28 on donor CD8(+) cells helps to eliminate host immunity. Two million CD4(+) CD28(-/-) or CD28(+/+) T cells were transplanted into sublethally irradiated (750 cGy), MHC class-II incompatible (B6 x bm12)F1 recipients. With CD28(-/-) cells, 44% of the recipients died at a median of 20 days compared with 94% at a median of 15 days with CD28(+/+) cells (P < .001). Two million CD8(+) CD28(-/-) or CD28(+/+) T cells were transplanted into sublethally irradiated (750 cGy), MHC class-I incompatible (B6 x bm1) F1 recipients. With CD28(-/-) cells, 25% of the recipients died at a median of 41 days compared with 100% at a median of 15 days with CD28(+/+) cells (P < . 001). (B6 x bm12)F1 and (B6 x bm1)F1 mice surviving after transplantation of CD28(-/-) cells recovered thymocytes, T cells, and B cells in numbers and function comparable with that of irradiation-control F1 mice. We conclude that CD28 contributes to the pathogenesis and the severity of GVHD. Our results suggest that the severity of GVHD could be decreased by the administration of agents that block CD28 function in T lymphocytes.  相似文献   

5.
GVHD is a major complication in allogeneic bone marrow transplantation (BMT). MHC class I mismatching increases GVHD, but in MHC-matched BMT minor histocompatibility antigens (mH) presented by MHC class I result in significant GVHD. To examine the modification of GVHD in the absence of cell surface MHC class I molecules, beta2-microglobulin-deficient mice (beta2m(-/-)) were used as allogeneic BMT recipients in MHC- and mH-mismatched transplants. Beta2m(-/-) mice accepted MHC class I-expressing BM grafts and developed significant GVHD. MHC (H-2)-mismatched recipients developed acute lethal GVHD. In contrast, animals transplanted across mH barriers developed indolent chronic disease that was eventually fatal. Engrafted splenic T cells in all beta2m(-/-) recipients were predominantly CD3+alphabetaTCR+CD4+ cells (15-20% of all splenocytes). In contrast, CD8+ cells engrafted in very small numbers (1-5%) irrespective of the degree of MHC mismatching. T cells proliferated against recipient strain antigens and recognized recipient strain targets in cytolytic assays. Cytolysis was blocked by anti-MHC class II but not anti-CD8 or anti-MHC class I monoclonal antibodies (MoAbs). Cytolytic CD4+ T cells induced and maintained GVHD in mH-mismatched beta2m(-/-) mice, supporting endogenous mH presentation solely by MHC class II. Conversely, haematopoietic beta2m(-/-) cells were unable to engraft in normal MHC-matched recipients, presumably due to natural killer (NK)-mediated rejection of class I-negative cells. Donor-derived lymphokine-activated killer cells (LAK) were unable to overcome graft rejection (GR) and support engraftment.  相似文献   

6.
We have investigated the in vivo administration of nonmitogenic anti-CD3F(ab')2 fragments for the prevention of lethal graft-vs-host disease (GVHD) in irradiated recipients of fully allogeneic bone marrow cells plus splenocyte (BMS) inocula. Recipients of anti-CD3F(ab')2 fragments administered for 1 mo post-bone marrow transplantation (BMT) had 100% survival without clinical or histopathological evidence of GVHD. Controls given saline injections succumbed by 39 days post-BMT. Similar results were obtained in groups of recipient mice given BMS in which T cells were depleted by in vitro anti-Thy-1.2 plus C' treatment. Further studies were undertaken to define mechanistic differences in the two approaches. Using Ly-5 congenic sources of donor bone marrow and spleen, we determined that anti-CD3F(ab')2 fragments induced TCR modulation and T cell depletion. Mature splenic-derived CD4+ cells were depleted to a greater extent than CD8+ cells. Early post-BMT, recipients receiving injections with control saline had the highest number of CD4+ and CD8+ cells (which may cause GVHD) followed by recipients of anti-CD3F(ab')2 fragments, with the fewest CD8+ cells observed in the anti-Thy-1.2 + C' treated group. CD3+CD4-CD8- cells (which may suppress GVHD generation) were present in higher numbers early post-BMT in recipients given anti-CD3F(ab')2 fragments as compared to recipients given anti-Thy-1.2 + C'-treated BMS. In long term survivors, a mononuclear T cell containing infiltrate without evidence of destruction was observed in sites of GVHD (lung and liver), consistent with a "Quilty" effect, which was not observed in either of the other two groups. Although survivors were tolerant of donor skin grafts and rejected third party grafts, recipients given anti-CD3F(ab')2 fragments but not anti-Thy-1.2 + C'-treated BMS had vigorous anti-host proliferative responses. These results demonstrate that although in vitro anti-Thy-1.2 + C' treatment of BMS (which is highly depletionary) and in vivo administration of anti-CD3F(ab')2 fragments (which is modulatory and less depletionary) are both effective strategies for GVHD, the cellular events involved in achieving GVHD prevention are indeed different.  相似文献   

7.
Rapamycin (RAPA), an inhibitor of cytokine responses, is under investigation in humans for graft-vs-host disease (GVHD) prevention. The mechanisms responsible for GVHD prevention are unknown. We show that RAPA is more effective in inhibiting CD8+ or TCR gammadelta+ than CD4+ T cell-mediated murine GVHD. To determine how RAPA inhibited GVHD, thoracic duct lymphocytes (TDL) were isolated from recipients of allogeneic donor grafts. Compared with controls, RAPA-treated recipients had a marked decrease in donor TDL T cell number between days 5 and 24 posttransplant. CD8+ T cell expansion was preferentially inhibited. RAPA inhibited Th1 or Th1 cytotoxic (Tc1) cytokines, but not Th2 or Tc2, cell generation. In situ mRNA hybridization also showed that TDL T cells from RAPA-treated mice had a lower frequency of granzyme B+ cells, indicating that RAPA inhibited the generation of CTL capable of mediating cytolysis through the release of granzyme B. In another system, RAPA was found to inhibit the GVL response of delayed donor lymphocyte infusions. Since CD8+ T cells are the primary effectors in this system, these data suggest that RAPA directly interfered with GVL effector cell expansion or function. We conclude that RAPA is effective in inhibiting Th1 or Tc1 cytokine production and CD8+ and TCRgammadelta+ T cell-mediated GVHD, but abrogates GVL.  相似文献   

8.
The feasibility of transplanting peripheral blood mononuclear cells (PBMC) from granulocyte colony-stimulating factor (G-CSF)-treated normal human donors to myeloablated allogeneic hosts has been demonstrated recently. The current work examined the ability of recombinant G-CSF to alter peripheral blood T-cell function and graft-versus-host disease (GVHD) in a murine model of allogeneic G-CSF-mobilized PBMC transplantation. Administration of recombinant G-CSF to C57BL/Ka mice markedly increased the capacity of PBMC to reconstitute lethally irradiated syngeneic hosts. T- and B-lineage lymphocytes were depleted about 10-fold in the bone marrow of the treated mice, and the T-cell yield in the blood was increased about fourfold. The ability of PBMC or purified CD4+ and CD8+ T cells to induce acute lethal GVHD in irradiated BALB/c mice was reduced after the administration of G-CSF. This was associated with decreased secretion of interferon gamma and interleukin-2 (IL-2) and an increased secretion of IL-4. The donor cell inoculum, which was most successful in the rescue of irradiated allogeneic hosts, was the low-density fraction of PBMC from G-CSF-treated mice. These low-density cells were enriched for CD4-CD8-NK1.1+ T cells and secreted about 10-fold more IL-4 than the unfractionated cells from the G-CSF-treated donors.  相似文献   

9.
BACKGROUND: We have recently reported that interleukin (IL)-12 prevents acute graft-versus-host disease (GVHD)-induced mortality in a full major histocompatibility complex- plus multiple minor antigen-mismatched A/J-->B10 bone marrow transplantation (BMT) model. Because most patients have access to a haploidentical, one haplotype-mismatched donor, we have now investigated the protective effect of IL-12 against GVHD and GVHD-associated immune dysfunction in a haploidentical CBD2F1 (H2kxd) --> B6D2F1 (H2bxd) strain combination. METHODS: GVHD was induced by injecting CBD2F1 marrow and spleen cells into lethally irradiated B6D2F1 mice. RESULTS: In untreated control mice, GVHD resulted in 87% mortality by day 8 after BMT, with no survivors beyond day 17. Treatment with a single injection of IL-12 on the day of BMT led to 87% long-term survival, with no significant weight loss, diarrhea or GVHD skin changes. The majority of T cells recovering in these mice showed the CD62L+, CD44low, CD45RBhigh naive phenotype. These T cells showed specific tolerance to both host and donor histocompatibility antigens, but normal anti-third party (H2s) alloresponses in vitro. B-cell proliferative responses to lipopolysaccharide were also normal in IL-12-protected mice. Moreover, normal negative selection of thymocytes bearing T cell receptors with Vbeta that recognize endogenous superantigens was observed among CD4+CD8- thymocytes, indicating a lack of GVHD-associated thymic selection abnormalities in IL-12-protected allogeneic BMT recipients. CONCLUSIONS: IL-12 provides permanent protection against an otherwise severe, rapidly lethal GVHD, with no clinical manifestations of chronic GVHD, immunosuppression or autoimmune features, in a full major histocompatibilty complex haplotype-mismatched murine BMT model.  相似文献   

10.
Roles of CD8+ and CD4+ cells on lethal graft-versus-host disease (GVHD) were investigated. Injection of spleen cells from C57BL/6 (B6) female mice into (BALB/c x B6)F1 nu/nu female mice caused subacute lethal GVHD (survival: 10-50 days). Injection of anti-Lyt-2.2 (CD8) monoclonal antibody (mAb) on days zero, four and 14 into recipient mice prolonged their survival for at least the 200-day observation period. Injection of anti-L3T4 (CD4) mAb also prolonged survival of the mice for more than 70 days, but they eventually died by 150 days. Pretreatment of the donor B6 spleen cells with anti-Lyt-2.2 (CD8) mAb and complement (C) prevented the development of GVHD, and their pretreatment with anti-L3T4 (CD4) mAb and C markedly prolonged the survival of recipient mice. Injection of a mixture of donor spleen cells pretreated with anti-Lyt-2.2 (CD8) mAb and C and those pretreated with anti-L3T4 (CD4) mAb and C induced subacute lethal GVHD. Injection of anti-L3T4 (CD4) mAb, but not anti-Lyt-2.2 (CD8) mAb on days five, nine and 14 prolonged survival of the recipient mice. These results indicated that the collaboration of CD8+ cells and CD4+ cells was necessary for induction of subacute lethal GVHD. CD4+ cells but not CD8+ cells were involved in mediating subacute GVHD from the onset of the disease. CD8+ cells were, however, capable of inducing late-onset lethal GVHD. Direct phenotyping of T cells in the recipient mice revealed that the CD4+ cells were incapable of repopulating without CD8+ cells, but that CD8+ cells were capable of repopulating without CD4+ cells.  相似文献   

11.
BACKGROUND: The incidence of skin rashes or erythema multiforme to sulfamethoxazole in exposed patients is about 3%. Among patients with acquired immunodeficiency syndrome the risk is approximately 10 times higher. The pathogenesis of these reactions and the reason for the increased frequency in HIV infections are not understood. OBJECTIVE: To investigate drug specific T-cell-mediated cytotoxicity in sulfamethoxazole- induced skin reactions. METHODS: Specific T-cell lines and T-cell clones generated from a donor who developed a skin rash to sulfamethoxazole were assessed with a standard 4 h 51Cr cytotoxicity assay in the presence or absence of soluble sulfamethoxazole. B lymphoblasts and keratinocytes with and without interferon gamma pretreatment were used as target cells. Selective blockers of FasL/Fas and perforin-mediated killing and immunostaining for perforin were used to evaluate the involvement of the different cytolytic pathways. RESULTS: CD4+ and CD8+ sulfamethoxazole specific T-cell clones showed a drug-specific and MHC-restricted cytotoxicity against autologous B lymphoblasts in the presence of soluble sulfamethoxazole. Keratinocytes, if pretreated with interferon gamma, were specifically killed predominantly by CD4+ T-cell clones. Specific T-cell clones of both CD4+ and CD8+ phenotype showed a strong immunoreactivity for perforin and the cytotoxicity was blocked by concanamycin A which suggests a perforin-mediated killing. CONCLUSION: Perforin-mediated killing of autologous keratinocytes in the presence of soluble sulfamethoxazole by drug-specific CD4+ lymphocytes may be a pathway for generalized drug-induced delayed skin reactions. The requirement of interferon gamma pretreatment of keratinocytes for efficient specific killing might explain the increased frequency of drug allergies in generalized viral infections like HIV, when interferon gamma levels are elevated.  相似文献   

12.
Cytotoxic T cells secrete perforin to kill virus-infected cells. In this study we show that perforin also plays a role in immune regulation. Perforin-deficient (perf -/-) mice chronically infected with lymphocytic choriomeningitis virus (LCMV) contained greater numbers of antiviral T cells compared to persistently infected +/+ mice. The enhanced expansion was seen in both CD4 and CD8 T cells, but the most striking difference was in the numbers of LCMV-specific CD8 T cells present in infected perf -/- mice. Persistent LCMV infection of +/+ mice results in both deletion and anergy of antigen-specific CD8 T cells, and our results show that this peripheral "exhaustion" of activated CD8 T cells occurred less efficiently in perf -/- mice. This excessive accumulation of activated CD8 T cells resulted in immune-mediated damage in persistently infected perf -/- mice; approximately 50% of these mice died within 2 to 4 weeks, and mortality was fully reversed by in vivo depletion of CD8 T cells. This finding highlights an interesting dichotomy between the role of perforin in viral clearance and immunopathology; perforin-deficient CD8 T cells were unable to clear the LCMV infection but were capable of causing immune-mediated damage. Finally, this study shows that perforin also plays a role in regulating T-cell-mediated autoimmunity. Mice that were deficient in both perforin and Fas exhibited a striking acceleration of the spontaneous lymphoproliferative disease seen in Fas-deficient (lpr) mice. Taken together, these results show that the perforin-mediated pathway is involved in downregulating T-cell responses during chronic viral infection and autoimmunity and that perforin and Fas act independently as negative regulators of activated T cells.  相似文献   

13.
Rapamycin (RAPA) has been shown to be a highly effective means of reducing the lethality of graft-versus-host disease (GVHD) in B10.BR recipients of allogeneic C57BL/6 donor cells. RAPA-treated mice had no clinical (e.g., weight loss, diarrhea, lethargy) or histologic evidence of classical acute or chronic GVHD but did develop a clinical-pathological syndrome consisting of ulcerative dermatitis, bile duct proliferation, and a nondestructive peribronchiolar pulmonary infiltration. Because RAPA was found to interfere with the deletion of self-reactive T cells, we wondered whether the RAPA-induced syndrome was related to failed negative selection or altered alloreactivity. We now show that the RAPA-induced syndrome is due to effects on mature, donor-derived alloreactive T cells. By titering the number of T cells infused we were able to vary the syndrome incidence. In contrast to the syndrome seen after cyclosporin A (CsA) administration, the RAPA syndrome did not require an intact thymus and the disease could not be adoptively transferred. The addition of CsA (which blocks T-cell cytokine production) to RAPA (which blocks T-cell cytokine response) prevented the generation of this syndrome, suggesting that the tissue manifestations seen in RAPA only treated recipients were caused by cytokine production and release. RAPA also caused this alloimmune syndrome in recipients of minor histocompatibility antigen disparate donor cells, showing that the RAPA effects were not restricted to a single donor-recipient strain combination or to instances in which the donor and recipient were fully major histocompatibility complex disparate. We conclude that RAPA is a highly effective means of preventing murine acute GVHD, and that when combined with CsA, warrants consideration for human investigations.  相似文献   

14.
Influenza virus infection is controlled in CD4-depleted mice that are also defective for the expression of either Fas (Fas-/-) or perforin (P-/-). Virus-immune P+/+ and P-/- CD8+ T cells can thus function in, respectively, a Fas-/- or Fas+/+ lung environment. The obvious question is whether the P-/- CD8+ set is effective in Fas-/- mice, a conclusion that would tend to favor cytokine secretion as the mode of virus clearance. Short term chimeras were made with P-/- bone marrow, P+/+ or P-/- T cells, and Fas+/+ or Fas-/- irradiated recipients. While the P+/+ CD8+ population cleared the virus from Fas+/+ and Fas-/- respiratory epithelium, the P-/- effectors were operational only if there was the potential for Fas to be expressed on radiation-resistant lung cells. Target cell destruction mediated via the Fas or perforin pathways is clearly the primary mechanism used by CD8+ T cells to terminate this viral pneumonia.  相似文献   

15.
In allogeneic marrow transplantation, donor T cells that recognize recipient alloantigens prevent rejection but also cause graft-versus-host disease (GVHD). To evaluate whether the ability to prevent marrow graft rejection could be dissociated from the ability to cause GVHD, we generated a panel of four different CD8 cytotoxic T-lymphocyte clones specific for H2(d) alloantigens. Three of the clones caused no overt toxicity when as many as 20 x 10(6) cells were infused intravenously into irradiated H2(d)-positive recipients, and one clone caused acute lethal toxicity within 1 to 3 days after transferring 10 x 10(6) cells into H2(d)-positive recipients. One clone that did not cause toxicity was able to prevent rejection of (C57BL/6J x C3H/HeJ)F1 marrow in 800 cGy-irradiated (BALB/cJ x C57BL/6J)F1 recipients without causing GVHD. Large numbers of cells and exogenously administered interleukin-2 were required to prevent rejection. These results with different CD8 clones suggest that GVHD and prevention of rejection could be separable effects mediated by distinct populations of donor T cells that recognize recipient alloantigens.  相似文献   

16.
To explore the modulatory effects of IL-2-activated NK cells on hematopoietic stem cell (HSC) engraftment further, we used fresh newborn liver cells (NLC) and IL-2-activated newborn liver cells (ANLC) as combined sources, respectively, of transplanted HSC and IL-2-activated NK cells free of contaminating CD3+ T cells. As previously found with adult IL-2-activated spleen cells, NLC cultured with IL-2 for 7 days exhibited lymphokine-activated killer (LAK) activity, veto activity, and natural suppressor activity, and enhanced both short-term and long-term stem cell engraftment by intact co-injected syngeneic and allogeneic NLC in totally MHC-mismatched lethally irradiated recipients. However, unlike adult IL-2-stimulated adult spleen cells, IL-2-activated NLC lacked CD3+ T cells and failed to induce lethal GVHD. FACS analysis and cell sorting experiments showed that the cells in ANLC which enhanced short-term HSC engraftment belonged to the relatively immature CD3-NK1.1-2B4+ NK cell subset. By contrast, cells belonging to the more mature CD3-NK1.1+2B4+ NK cell subset showed no HSC-enhancing effects. Identification and isolation in humans of similar NK cell enhancers of HSC could lead to a new approach to improving stem cell engraftment in MHC-mismatched recipients without increasing the risk of GVHD.  相似文献   

17.
The binding of CD2, present on T cells, to its counterreceptor CD48 facilitates adhesion, signaling, alloantigen-induced cytokine production, and cytotoxic T-lymphocyte responses. Because these T-cell functions have been implicated in graft-versus-host disease (GVHD) pathogenesis, we have analyzed the effects of the CD2:CD48 pathway on GVHD mediated by CD4(+) and CD8(+) T cells infused into sublethally irradiated recipients. CD4(+) T-cell-mediated, and to a lesser extent, CD8(+) T-cell-mediated GVHD was inhibited by CD2 + 48 monoclonal antibody (MoAb) infusion. To assess the effects of combined MoAb infusion on alloengraftment, two different alloengraftment bone marrow transplantation (BMT) models were used. In both, MoAb infusion markedly inhibited alloengraftment and hematopoietic recovery post-BMT. To determine if the adverse effects on lymphohematopoiesis in the allogeneic BMT recipients were caused by an immune or nonimmune mechanism, studies were performed in congenic BMT recipients to preclude an immune mechanism as the cause for delayed recovery post-BMT. MoAb infusion resulted in impaired lymphohematopoietic recovery in congenic BMT recipients and markedly reduced day 12 colony-forming unit-spleen formation in syngeneic BMT recipients, consistent with a nonimmune mediated mechanism. Because the spleen is a site of early hematopoietic recovery post-BMT, studies were performed using adult splenectomized syngeneic BMT recipients. MoAb infusion delayed recovery in both nonsplenectomized and splenectomized recipients post-BMT, indicating that the delayed hematopoietic recovery was not the consequence of an abnormal homing pattern of hematopoietic progenitors to the spleen early post-BMT. CD48 MoAb was necessary and sufficient for the inhibition of GVHD lethality and delayed lymphohematopoietic effects of the combined MoAb regimen. CD48 MoAb was found to induce a profound modulation of CD48 antigen expression on BM cells, suggesting that the CD48 antigen may have an important function in hematopoiesis in the BM compartment. Taken together, these data provide evidence that the CD48 antigen plays a critical role in regulating hematopoiesis in post-BMT.  相似文献   

18.
Allogeneic CD8+ T cells mediate both a graft-vs-leukemia (GVL) effect and graft-vs-host disease (GVHD). To evaluate whether CD8 cells of defined cytokine phenotype differentially mediate these processes, alloreactive donor CD8+ T cells preferentially secreting type I or type II cytokines were generated by alloantigenic priming in vitro in the presence of IL-12 or IL-4, respectively. Both cytokine-secreting subsets lysed allogeneic tumor targets in vitro ("Tc1" and "Tc2" subsets). A transplantation model was established (B6 into B6C3F1, 1050 cGy host irradiation) using the 32Dp210 myeloid line (bcr/abl transfected, H-2k; 1 x 10(4) tumor cells/recipient). Compared with leukemia controls (death at 12.9 days post-bone marrow transplantation), both Tc1 and Tc2 recipients were conferred a survival advantage. At cell doses of 2 to 2.5 x 10(7), the Tc1-mediated GVL effect (mean survival of 34.2 days) was more potent than the Tc2-mediated GVL effect (mean survival of 20.5 days; Tc1 > Tc2, p = 0.009). On day 15, histologic examination showed that Tc1 recipients had undetectable tumor burdens, whereas Tc2 recipients had extensive leukemic infiltrates. However, Tc2 recipients had essentially no histologic evidence of GVHD, whereas Tc1 recipients had mild to moderate GVHD (average GVHD scores of 1/40 and 9.3/40, respectively). In contrast, recipients of uncultured CD8+ donor T cells developed severe GVHD (average GVHD score of 26.7/40). Because in vitro-generated, alloreactive Tc1 and Tc2 populations mediated GVL with reduced GVHD, we conclude that both subsets may improve the therapeutic outcome of allogeneic T cell transfers in patients with leukemia.  相似文献   

19.
We have recently shown that a short course of high-dose interleukin-2 (IL-2) can markedly inhibit the graft-versus-host disease (GVHD)-promoting activity of donor CD4+ T cells. The difficulty in dissociating GVHD-promoting from graft-versus-leukemia (GVL) effects of alloreactive donor T cells currently prevents clinical bone marrow transplantation (BMT) from fulfilling its full potential. To test the capacity of IL-2 treatment to promote such a dissociation, we have developed a new murine transplantable acute myelogenous leukemia model using a class II major histocompatibility complex-positive BALB/c Moloney murine leukemia virus-induced promonocytic leukemia, 2B-4-2. BALB/c mice receiving 2.5 x 10(5) 2B-4-2 cells intravenously 1 week before irradiation and syngeneic BMT died from leukemia within 2 to 4 weeks after BMT. Administration of syngeneic spleen cells and/or a 2.5-day course of IL-2 treatment alone did not inhibit leukemic mortality. In contrast, administration of non-T-cell-depleted fully allogeneic B10 (H-2b) spleen cells and T-cell-depleted B10 marrow led to a significant delay in leukemic mortality in IL-2-treated mice. In these animals GVHD was inhibited by IL-2 treatment. GVL effects were mediated entirely by donor CD4+ and CD8+ T cells. Remarkably, IL-2 administration did not diminish the magnitude of the GVL effect of either T-cell subset. This was surprising, because CD4-mediated GVHD was inhibited in the same animals in which CD4-mediated GVL effects were not reduced by IL-2 treatment. These results suggest a novel mechanism by which GVHD and GVL effects of a single unprimed alloreactive T-cell subset can be dissociated; different CD4 activities promote GVHD and GVL effects, and the former, but not the latter activities are inhibited by treatment with IL-2.  相似文献   

20.
Upon encounter with its antigenic stimulus, CTL characteristically proliferate, produce cytokines, and lyse the Ag-presenting cell in an attempt to impede further infection. Superantigens are extremely efficient immunostimulatory proteins that promote high levels of proliferation and massive cytokine production in reactive T cells. We compared the activation of murine influenza-specific CD8+ CTL clones stimulated with either influenza peptide or the superantigen staphylococcus enterotoxin B (SEB). We found that influenza peptide/MHC and SEB appeared equally capable of eliciting proliferation and IFN-gamma production. However, while influenza peptide/MHC elicited both perforin- and Fas ligand (FasL)/Fas (CD95L/CD95)-mediated cytolytic mechanisms, SEB was unable to trigger perforin-mediated cytolysis or serine esterase release. Examination of intracellular Ca2+ mobilization events revealed that the ability to trigger intracellular Ca2+ flux was not comparable between influenza peptide and SEB. SEB stimulated only a small rise in levels of intracellular Ca2+, at times indistinguishable from background. These findings indicate that the short-term cytolytic potential of superantigen-activated CD8+ CTL clones appears to be restricted to FasL/Fas (CD95L/CD95) mediated cytolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号