首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We consider the following problem of scheduling with agreements: a set of jobs must be scheduled non-preemptively on identical machines subject to constraints that only some specific jobs can be scheduled concurrently on different machines. These constraints are represented by an agreement graph and the aim is to minimize the makespan. This problem is NP-hard. We study the complexity of the problem for two machines and arbitrary bipartite agreement graphs, in particular we prove the NP-hardness of the open problem proposed in the literature which is the case of two machines with processing times at most 3. We propose list algorithms with empirical results for the problem in the general case.  相似文献   

2.
A matching in a graph is a set of edges no two of which share a common vertex. In this paper we introduce a new, specialized type of matching which we call uniquely restricted matchings, originally motivated by the problem of determining a lower bound on the rank of a matrix having a specified zero/ non-zero pattern. A uniquely restricted matching is defined to be a matching M whose saturated vertices induce a subgraph which has only one perfect matching, namely M itself. We introduce the two problems of recognizing a uniquely restricted matching and of finding a maximum uniquely restricted matching in a given graph, and present algorithms and complexity results for certain special classes of graphs. We demonstrate that testing whether a given matching M is uniquely restricted can be done in O(|M||E|) time for an arbitrary graph G=(V,E) and in linear time for cacti, interval graphs, bipartite graphs, split graphs and threshold graphs. The maximum uniquely restricted matching problem is shown to be NP-complete for bipartite graphs, split graphs, and hence for chordal graphs and comparability graphs, but can be solved in linear time for threshold graphs, proper interval graphs, cacti and block graphs. Received April 12, 1998; revised June 21, 1999.  相似文献   

3.
使用Ford-Fulkerson算法研究输入排队调度   总被引:1,自引:0,他引:1  
Ford-Fulkerson算法是图论中求解网络最大流的经典算法之一。输入排队Crossbar调度算法是以获得交换机的输入端口和输出端口最大匹配,从而得到高吞吐量。因而在调度算法理论研究中把应用了二部图最大匹配的MaximumSizeMatching(MSM)和MaximumWeightMatching(MWM)算法作为目前各种调度算法性能评价标准。论文介绍了如何使用Ford-Fulkerson算法求解二部图的最大匹配,并且应用算法于输入排队调度算法仿真中,得出对应典型算法MSM和MWM的性能仿真曲线,从而为进一步研究调度算法打下理论基础。  相似文献   

4.
科学与工程计算中的很多复杂应用问题需要使用科学工作流技术,超算领域中的科学工作流常以并行任务图建模,并行任务图的有效调度对应用的高效执行有重要意义。给出了资源限制条件下并行任务图的调度模型;针对Fork-Join类并行任务图给出了若干最优化调度结论;针对一般并行任务图提出了一种新的调度算法,该算法考虑了数据通信开销对资源分配和调度性能的影响,并对已有的CPA算法在特定情况下进行了改进。通过实验与常用的CPR和CPA算法做比较,验证了提出的新算法能够获得很好的调度效果。本文提出的调度算法和得到的最优调度结论对工作流应用系统的高性能调度功能开发具有借鉴意义。  相似文献   

5.
The class of bipartite permutation graphs is the intersection of two well known graph classes: bipartite graphs and permutation graphs. A complete bipartite decomposition of a bipartite permutation graph is proposed in this note. The decomposition gives a linear structure of bipartite permutation graphs, and it can be obtained in O(n) time, where n is the number of vertices. As an application of the decomposition, we show an O(n) time and space algorithm for finding a longest path in a bipartite permutation graph.  相似文献   

6.
提出一种面向异构云计算环境的截止时间约束的MapReduce作业调度方法。使用加权偶图建模MapReduce作业调度问题,将Map任务及Reduce任务与资源槽分为2个节点集合,连接2个节点集合的边的权重为任务在资源槽上的执行时间。进而,使用整数线性规划求解最小加权偶图匹配,从而得到任务到资源槽的调度方案。本文考虑了云计算环境下异构节点任务处理时间的差异性,在线动态评估和调整任务的截止时间,从而提升了MapReduce作业处理的性能。实验结果表明,所提出的方法缩短了作业数据访问的时间,最小化了截止时间冲突的作业数量。  相似文献   

7.
We study multithreaded push–relabel based algorithms for computing maximum cardinality matching in bipartite graphs. Matching is a fundamental combinatorial problem with applications in a wide variety of problems in science and engineering. We are motivated by its use in the context of sparse linear solvers for computing the maximum transversal of a matrix. Other applications can be found in many fields such as bioinformatics (Azad et al., 2010) [4], scheduling (Timmer and Jess, 1995) [27], and chemical structure analysis (John, 1995) [14]. We implement and test our algorithms on several multi-socket multicore systems and compare their performance to state-of-the-art augmenting path-based serial and parallel algorithms using a test set comprised of a wide range of real-world instances.  相似文献   

8.
Parallel updates of minimum spanning trees (MSTs) have been studied in the past. These updates allowed a single change in the underlying graph, such as a change in the cost of an edge or an insertion of a new vertex. Multiple update problems for MSTs are concerned with handling more than one such change. In the sequential case multiple update problems may be solved using repeated applications of an efficient algorithm for a single update. However, for efficiency reasons, parallel algorithms for multiple update problems must consider all changes to the underlying graph simultaneously. In this paper we describe parallel algorithms for updating an MST whenk new vertices are inserted or deleted in the underlying graph, when the costs ofk edges are changed, or whenk edge insertions and deletions are performed. For multiple vertex insertion update, our algorithm achieves time and processor bounds ofO(log n·logk) and nk/(logn·logk), respectively, on a CREW parallel random access machine. These bounds are optimal for dense graphs. A novel feature of this algorithm is a transformation of the previous MST andk new vertices to a bipartite graph which enables us to obtain the above-mentioned bounds.  相似文献   

9.
Summary A bipartite graph G=(A, B, E) is convex on the vertex set A if A can be ordered so that for each element b in the vertex set B the elements of A connected to b form an interval of A; G is doubly convex if it is convex on both A and B. Letting ¦A¦=m and ¦B¦=n, in this paper we describe maximum matching algorithms which run in time O(m + nA(n)) on convex graphs (where A(n) is a very slowly growing function related to a functional inverse of Ackermann's function), and in time O(m+n) on doubly convex graphs. We also show that, given a maximum matching in a convex bipartite graph G, a corresponding maximum set of independent vertices can be found in time O(m+n). Finally, we briefly discuss some generalizations of convex bipartite graphs and some extensions of the previously discussed techniques to instances in scheduling theory.On leave from the Institute of Computer Science, Polish Academy of Sciences, P.O. Box 22, 00-901 Warsaw PKiN, PolandAlso with the Departments of Electrical Engineering and of Computer Science  相似文献   

10.
Goldreich  Ron 《Algorithmica》2008,32(2):302-343
Abstract. We further develop the study of testing graph properties as initiated by Goldreich, Goldwasser and Ron. Loosely speaking, given an oracle access to a graph, we wish to distinguish the case when the graph has a pre-determined property from the case when it is ``far' from having this property. Whereas they view graphs as represented by their adjacency matrix and measure the distance between graphs as a fraction of all possible vertex pairs, we view graphs as represented by bounded-length incidence lists and measure the distance between graphs as a fraction of the maximum possible number of edges. Thus, while the previous model is most appropriate for the study of dense graphs, our model is most appropriate for the study of bounded-degree graphs. In particular, we present randomized algorithms for testing whether an unknown bounded-degree graph is connected, k -connected (for k>1 ), cycle-free and Eulerian. Our algorithms work in time polynomial in 1/ɛ , always accept the graph when it has the tested property, and reject with high probability if the graph is ɛ -far from having the property. For example, the 2-connectivity algorithm rejects (with high probability) any N -vertex d -degree graph for which more than ɛ dN edges need to be added in order to make the graph 2-edge-connected. In addition we prove lower bounds of Ω(\sqrt N ) on the query complexity of testing algorithms for the bipartite and expander properties.  相似文献   

11.
We consider the online scheduling of a set of jobs on two uniform machines with the makespan as objective. The jobs are presented in a list. We consider two different eligibility constraint set assumptions, namely (i) arbitrary eligibility constraints and (ii) Grade of Service (GoS) eligibility constraints. In the first case, we prove that the High Speed Machine First (HSF) algorithm, which assigns jobs to the eligible machine that has the highest speed, is optimal. With regard to the second case, we point out an error in [M. Liu et al., Online scheduling on two uniform machines to minimize the makespan, Theoretical Computer Science 410 (21–23) (2009) 2099–2109]; we then provide tighter lower bounds and present algorithms with worst-case analysis for various ranges of machine speeds.  相似文献   

12.
We explore three important avenues of research in algorithmic graph-minor theory, which all stem from a key min-max relation between the treewidth of a graph and its largest grid minor. This min-max relation is a keystone of the Graph Minor Theory of Robertson and Seymour, which ultimately proves Wagner’s Conjecture about the structure of minor-closed graph properties. First, we obtain the only known polynomial min-max relation for graphs that do not exclude any fixed minor, namely, map graphs and power graphs. Second, we obtain explicit (and improved) bounds on the min-max relation for an important class of graphs excluding a minor, namely, K 3,k -minor-free graphs, using new techniques that do not rely on Graph Minor Theory. These two avenues lead to faster fixed-parameter algorithms for two families of graph problems, called minor-bidimensional and contraction-bidimensional parameters, which include feedback vertex set, vertex cover, minimum maximal matching, face cover, a series of vertex-removal parameters, dominating set, edge dominating set, R-dominating set, connected dominating set, connected edge dominating set, connected R-dominating set, and unweighted TSP tour. Third, we disprove a variation of Wagner’s Conjecture for the case of graph contractions in general graphs, and in a sense characterize which graphs satisfy the variation. This result demonstrates the limitations of a general theory of algorithms for the family of contraction-closed problems (which includes, for example, the celebrated dominating-set problem). If this conjecture had been true, we would have had an extremely powerful tool for proving the existence of efficient algorithms for any contraction-closed problem, like we do for minor-closed problems via Graph Minor Theory.  相似文献   

13.
A family of graphs is a k-bounded-hole family if every graph in the family has no holes with more than k vertices. The problem of finding in a graph a maximum weight induced path has applications in large communication and neural networks when worst case communication time needs to be evaluated; unfortunately this problem is NP-hard even when restricted to bipartite graphs. We show that this problem has polynomial time algorithms for k-bounded-hole families of graphs, for interval-filament graphs and for graphs decomposable by clique cut-sets or by splits into prime subgraphs for which such algorithms exist.  相似文献   

14.
A version of weighted coloring of a graph is introduced which is motivated by some types of scheduling problems: each node v of a graph G corresponds to some operation to be processed (with a processing time w(v)), edges represent nonsimultaneity requirements (incompatibilities). We have to assign each operation to one time slot in such a way that in each time slot, all operations assigned to this slot are compatible; the length of a time slot will be the maximum of the processing times of its operations. The number k of time slots to be used has to be determined as well. So, we have to find a k-coloring = of G such that w(S 1) + ⋅s +w(S k ) is minimized where w(S i ) = max {w(v) :vV}. Properties of optimal solutions are discussed, and complexity and approximability results are presented. Heuristic methods are given for establishing some of these results. The associated decision problems are shown to be NP-complete for bipartite graphs, for line-graphs of bipartite graphs, and for split graphs.  相似文献   

15.
In order to meet the inherent need of real-time applications for high quality results within strict timing constraints, the employment of effective scheduling techniques is crucial in distributed real-time systems. In this paper, we evaluate by simulation the performance of strategies for the dynamic scheduling of composite jobs in a homogeneous distributed real-time system. Each job that arrives in the system is a directed acyclic graph of component tasks and has an end-to-end deadline. For each scheduling policy, we provide an alternative version which allows imprecise computations, taking into account the effects of input error on the processing time of the component tasks of a job. The simulation results show that the alternative versions of the algorithms outperform their respective counterparts. To our knowledge, an imprecise computations approach for the dynamic scheduling of multiple task graphs with end-to-end deadlines and input error has never been discussed in the literature before.  相似文献   

16.
We study online adaptive scheduling for multiple sets of parallel jobs, where each set may contain one or more jobs with time-varying parallelism. This two-level scheduling scenario arises naturally when multiple parallel applications are submitted by different users or user groups in large parallel systems, where both user-level fairness and system-wide efficiency are of important concerns. To achieve fairness, we use the well-known equi-partitioning algorithm to distribute the available processors among the active job sets at any time. For efficiency, we apply a feedback-driven adaptive scheduler that periodically adjusts the processor allocations within each set by consciously exploiting the jobs’ execution history. We show that our algorithm achieves asymptotically competitive performance with respect to the set response time, which incorporates two widely used performance metrics, namely, total response time and makespan, as special cases. Both theoretical analysis and simulation results demonstrate that our algorithm improves upon an existing scheduler that provides only fairness but lacks efficiency. Furthermore, we provide a generalized framework for analyzing a family of scheduling algorithms based on feedback-driven policies with provable efficiency. Finally, we consider an extended multi-level hierarchical scheduling model and present a fair and efficient solution that effectively reduces the problem to the two-level model.  相似文献   

17.
The objective of this paper is a study of minimizing the maximum completion time min F max, or cycle time of the last job of a given family of jobs using flow shop heuristic scheduling techniques. Three methods are presented: minimize idle time (MIT); Campbell, Dudek and Smith (CDS); and Palmer. An example problem with ten jobs and five machines is used to compare results of these methods. A deterministic t-timed colored Petri net model has been developed for scheduling problem. An execution of the deterministic timed Petri net allows to compute performance measures by applying graph traversing algorithms starting from initial global state and going into a desirable final state(s) of the production system. The objective of the job scheduling policy is minimizing the cycle time of the last job scheduled in the pipeline of a given family of jobs. Three heuristic scheduling methods have been implemented. First, a sub-optimal sequence of jobs to be scheduled is generated. Second, a Petri net-based simulator with graphical user interface to monitor execution of the sequence of tasks on machines is dynamically designed. A deterministic t-timed colored Petri net model has been developed and implemented for flexible manufacturing systems (FMS). An execution of the deterministic timed Petri net into a reachability graph allows to compute performance measures by applying graph traversing algorithms starting from initial global state to a desirable final state(s) of the production system.  相似文献   

18.
In this paper we present a new technique for computing lower bounds for graph treewidth. Our technique is based on the fact that the treewidth of a graph G is the maximum order of a bramble of G minus one. We give two algorithms: one for general graphs, and one for planar graphs. The algorithm for planar graphs is shown to give a lower bound for both the treewidth and branchwidth that is at most a constant factor away from the optimum. For both algorithms, we report on extensive computational experiments that show that the algorithms often give excellent lower bounds, in particular when applied to (close to) planar graphs. This work was partially supported by the Netherlands Organisation for Scientific Research NWO (project Treewidth and Combinatorial Optimisation) and partially by the DFG research group “Algorithms, Structure, Randomness” (Grant number GR 883/9-3, GR 883/9-4).  相似文献   

19.
In a graph G a matching is a set of edges in which no two edges have a common endpoint. An induced matching is a matching in which no two edges are linked by an edge of G. The maximum induced matching (abbreviated MIM) problem is to find the maximum size of an induced matching for a given graph G. This problem is known to be NP-hard even on bipartite graphs or on planar graphs. We present a polynomial time algorithm which given a graph G either finds a maximum induced matching in G, or claims that the size of a maximum induced matching in G is strictly less than the size of a maximum matching in G. We show that the MIM problem is NP-hard on line-graphs, claw-free graphs, chair-free graphs, Hamiltonian graphs and r-regular graphs for r \geq 5. On the other hand, we present polynomial time algorithms for the MIM problem on (P 5,D m )-free graphs, on (bull, chair)-free graphs and on line-graphs of Hamiltonian graphs.  相似文献   

20.
We consider two single machine bicriteria scheduling problems in which jobs belong to either of two different disjoint sets, each set having its own performance measure. The problem has been referred to as interfering job sets in the scheduling literature and also been called multi-agent scheduling where each agent's objective function is to be minimized. In the first problem (P1) we look at minimizing total completion time and number of tardy jobs for the two sets of jobs and present a forward SPT-EDD heuristic that attempts to generate the set of non-dominated solutions. The complexity of this specific problem is NP-hard; however some pseudo-polynomial algorithms have been suggested by earlier researchers and they have been used to compare the results from the proposed heuristic. In the second problem (P2) we look at minimizing total weighted completion time and maximum lateness. This is an established NP-hard problem for which we propose a forward WSPT-EDD heuristic that attempts to generate the set of supported points and compare our solution quality with MIP formulations. For both of these problems, we assume that all jobs are available at time zero and the jobs are not allowed to be preempted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号