首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
1. The purpose of the present study was to explore the different mechanisms of [Ca2+]i oscillations induced by high concentrations of either carbachol (CCh) or extracellular Ca2+ ([Ca2+]o). First, we compared the oscillations induced by CCh at concentrations of 100-300 micromol/L and [Ca2+]o (5 mmol/L) in the single rat ventricular myocyte. Second, we studied CCh- and [Ca2+]o-induced [Ca2+]i oscillations following either interference with the production of inositol trisphosphate (IP3), reductions in cytosolic Ca2+ ([Ca2+]i), inhibition of Ca2+ influx and Na+-Ca2+ exchange or depletion of Ca2+ from its intracellular store. 2. The [Ca2+]i oscillations induced by CCh were frequent and were superimposed on [Ca2+]i transients in electrically stimulated cells, whereas those induced by high [Ca2+]o were occasional and occurred in quiescent cells and between [Ca2+]i transients in electrically stimulated cells. In both cases, [Ca2+]i oscillations were preceded by an increase in resting levels of [Ca2+]i. 3. Carbachol-induced [Ca2+]i oscillations were accompanied by an increase in amplitude and prolongation of the time of decline to 80% of the peak of the [Ca2+]i transient, while high [Ca2+]o-induced [Ca2+]i oscillations were the opposite. 4. A reduction of [Ca2+]o to 0.1 mmol/L and treatment with Ni2+ or ryanodine or 1,2-bis(2-aminophenoxy)ethane-N,N,N', N'-tetraacetic acid AM (BAPTA-AM) abolished the [Ca2+]i oscillations induced by both CCh and high [Ca2+]o. 5. The calcium channel blockers verapamil and nifedipine and inhibitors of phospholipase C (neomycin and U-73122) abolished the [Ca2+]i oscillations induced by CCh; Li+ accelerated the onset of the [Ca2+]i oscillations induced by CCh. 6. These observations suggest that the mechanisms responsible for the [Ca2+]i oscillations induced by CCh and high [Ca2+]o are different from each other. Other than an increase in extracellular Ca2+ influx as a mechanism common for both CCh- and high [Ca2+]o-induced [Ca2+]i oscillations, the CCh-induced [Ca2+]i oscillations involve influx of Ca2+ via L-type Ca2+ channels, Na+-Ca2+ exchange, mobilization of intracellular Ca2+ and IP3 production.  相似文献   

2.
Inositol 1,4,5-trisphosphate (IP3) [corrected] binding to its receptors (IP3R) in the endoplasmic reticulum (ER) activates Ca2+ release from the ER lumen to the cytoplasm, generating complex cytoplasmic Ca2+ concentration signals including temporal oscillations and propagating waves. IP3-mediated Ca2+ release is also controlled by cytoplasmic Ca2+ concentration with both positive and negative feedback. Single-channel properties of the IP3R in its native ER membrane were investigated by patch clamp electrophysiology of isolated Xenopus oocyte nuclei to determine the dependencies of IP3R on cytoplasmic Ca2+ and IP3 concentrations under rigorously defined conditions. Instead of the expected narrow bell-shaped cytoplasmic free Ca2+ concentration ([Ca2+]i) response centered at approximately 300 nM-1 microM, the open probability remained elevated (approximately 0.8) in the presence of saturating levels (10 microM) of IP3, even as [Ca2+]i was raised to high concentrations, displaying two distinct types of functional Ca2+ binding sites: activating sites with half-maximal activating [Ca2+]i (Kact) of 210 nM and Hill coefficient (Hact) approximately 2; and inhibitory sites with half-maximal inhibitory [Ca2+]i (Kinh) of 54 microM and Hill coefficient (Hinh) approximately 4. Lowering IP3 concentration was without effect on Ca2+ activation parameters or Hinh, but decreased Kinh with a functional half-maximal activating IP3 concentration (KIP3) of 50 nM and Hill coefficient (HIP3) of 4 for IP3. These results demonstrate that Ca2+ is a true receptor agonist, whereas the sole function of IP3 is to relieve Ca2+ inhibition of IP3R. Allosteric tuning of Ca2+ inhibition by IP3 enables the individual IP3R Ca2+ channel to respond in a graded fashion, which has implications for localized and global cytoplasmic Ca2+ concentration signaling and quantal Ca2+ release.  相似文献   

3.
1. ATP (10-100 microM), but not glutamate (100 microM), stimulated the release of plasminogen from microglia in a concentration-dependent manner during a 10 min stimulation. However, neither ATP (100 microM) nor glutamate (100 microM) stimulated the release of NO. A one hour pretreatment with BAPTA-AM (200 microM), which is metabolized in the cytosol to BAPTA (an intracellular Ca2+ chelator), completely inhibited the plasminogen release evoked by ATP (100 microM). The Ca2+ ionophore A23187 induced plasminogen release in a concentration-dependent manner (0.3 microM to 10 microM). 2. ATP induced a transient increase in the intracellular calcium concentration ([Ca2+]i) in a concentration-dependent manner which was very similar to the ATP-evoked plasminogen release, whereas glutamate (100 microM) had no effect on [Ca2+]i (70 out of 70 cells) in microglial cells. A second application of ATP (100 microM) stimulated an increase in [Ca2+]i similar to that of the first application (21 out of 21 cells). 3. The ATP-evoked increase in [Ca2+]i was totally dependent on extracellular Ca2+, 2-Methylthio ATP was active (7 out of 7 cells), but alpha,beta-methylene ATP was inactive (7 out of 7 cells) at inducing an increase in [Ca2+]i. Suramin (100 microM) was shown not to inhibit the ATP-evoked increase in [Ca2+]i (20 out of 20 cells). 2'- and 3'-O-(4-Benzoylbenzoyl)-adenosine 5'-triphosphate (BzATP), a selective agonist of P2X7 receptors, evoked a long-lasting increase in [Ca2+]i even at 1 microM, a concentration at which ATP did not evoke the increase. One hour pretreatment with adenosine 5'-triphosphate-2', 3'-dialdehyde (oxidized ATP, 100 microM), a selective antagonist of P2X7 receptors, blocked the increase in [Ca2+]i induced by ATP (10 and 100 microM). 4. These data suggest that ATP may transit information from neurones to microglia, resulting in an increase in [Ca2+]i via the ionotropic P2X7 receptor which stimulates the release of plasminogen from the microglia.  相似文献   

4.
In the present study we have investigated the mechanism of intracellular Ca2+ activity ([Ca2+]i) changes in HT29 cells induced by adenosine triphosphate (ATP), carbachol (CCH), and neurotensin (NT). [Ca2+]i was measured with the fluorescent Ca2+ indicator fura-2 at the single-cell level or in small cell plaques with high time resolution (1-40Hz). ATP and CCH induced not only a dose-dependent [Ca2+]i peak response, but also changes of the plateau phase. The [Ca2+]i plateau was inversely dependent on the ATP concentration, whereas the CCH-induced [Ca2+]i plateau increased at higher CCH concentrations. NT showed (from 10(-10) to 10(-7) mol/l) in most cases only a [Ca2+]i spike lasting 2-3 min. The [Ca2+]i plateau induced by ATP (10(-6) mol/l) and CCH (10(-5) mol/l) was abolished by reducing the Ca2+ activity in the bath from 10(-3) to 10(-4) mol/l (n = 7). In Ca(2+)-free bathing solution the [Ca2+]i peak value for all three agonists was not altered. Using fura-2 quenching by Mn2+ as an indicator of Ca2+ influx the [Ca2+]i peak was always reached before Mn2+ influx started. Every agonist showed this delayed stimulation of the Ca2+ influx with a lag time of 23 +/- 1.5 s (n = 15) indicating a similar mechanism in each case. Verapamil (10(-6)-10(-4) mol/l) blocked dose dependently both phases (peak and plateau) of the CCH-induced [Ca2+]i increase. Short pre-incubation with verapamil augmented the effect on the [Ca2+]i peak, whereas no further influence on the plateau was observed. Ni2+ (10(-3) mol/l) reduced the plateau value by 70%.  相似文献   

5.
In pancreatic acinar cells, as in many other cell types, the tumour promoter thapsigargin (TG) evokes a significant increase of intracellular free Ca2+ ([Ca2+]i). The increases of [Ca2+]i evoked by TG was associated with significant changes of plasma membrane Ca2+ permeability, with [Ca2+]i values following changes in extracellular [Ca2+]. Plasma membrane Ca2+ extrusion is activated rapidly as a consequence of the rise in [Ca2+]i evoked by TG and the rate of extrusion is linearly dependent on [Ca2+]i up to 1 microM Ca2+. In contrast, the activation of the Ca2+ entry pathway is delayed and the apparent rate of Ca2+ entry is independent of [Ca2+]i. In the presence of 20 mM caffeine, which reduces the resting levels of inositol trisphosphate (InsP3), the increase of [Ca2+]i evoked by TG was significantly reduced. The reduction was manifest both as a decrease of the amplitude of the [Ca2+]i peak (30% reduction) and, more importantly, as a reduction of the apparent maximal rate of [Ca2+]i increase (from 12.3 +/- 1.0 to 6.1 +/- 0.6 nM Ca2+/s). The inhibition evoked by caffeine was reversible and the removal of caffeine in the continuous presence of TG evoked a further increase of [Ca2+]i. The amplitude of the [Ca2+]i increase upon caffeine removal was reduced as a function of the time of TG exposure. Addition of TG in the presence of 1 mM La3+, which is known to inhibit the plasma membrane Ca(2+)-activated adenosine triphosphatase, induced a much higher peak of [Ca2+]i. This increase was associated with an augmentation of the apparent rate of [Ca2+]i increase (from 12.3 +/- 1.2 to 16.1 +/- 1.9 nM Ca2+/s).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The repetitive spiking of free cytosolic [Ca2+] ([Ca2+]i) during hormonal activation of hepatocytes depends on the activation and subsequent inactivation of InsP3-evoked Ca2+ release. The kinetics of both processes were studied with flash photolytic release of InsP3 and time resolved measurements of [Ca2+]i in single cells. InsP3 evoked Ca2+ flux into the cytosol was measured as d[Ca2+]i/dt, and the kinetics of Ca2+ release compared between hepatocytes and cerebellar Purkinje neurons. In hepatocytes release occurs at InsP3 concentrations greater than 0.1-0.2 microM. A comparison with photolytic release of metabolically stable 5-thio-InsP3 suggests that metabolism of InsP3 is important in determining the minimal concentration needed to produce Ca2+ release. A distinct latency or delay of several hundred milliseconds after release of low InsP3 concentrations decreased to a minimum of 20-30 ms at high concentrations and is reduced to zero by prior increase of [Ca2+]i, suggesting a cooperative action of Ca2+ in InsP3 receptor activation. InsP3-evoked flux and peak [Ca2+]i increased with InsP3 concentration up to 5-10 microM, with large variation from cell to cell at each InsP3 concentration. The duration of InsP3-evoked flux, measured as 10-90% risetime, showed a good reciprocal correlation with d[Ca2+]i/dt and much less cell to cell variation than the dependence of flux on InsP3 concentration, suggesting that the rate of termination of the Ca2+ flux depends on the free Ca2+ flux itself. Comparing this data between hepatocytes and Purkinje neurons shows a similar reciprocal correlation for both, in hepatocytes in the range of low Ca2+ flux, up to 50 microM. s-1 and in Purkinje neurons at high flux up to 1,400 microM. s-1. Experiments in which [Ca2+]i was controlled at resting or elevated levels support a mechanism in which InsP3-evoked Ca2+ flux is inhibited by Ca2+ inactivation of closed receptor/channels due to Ca2+ accumulation local to the release sites. Hepatocytes have a much smaller, more prolonged InsP3-evoked Ca2+ flux than Purkinje neurons. Evidence suggests that these differences in kinetics can be explained by the much lower InsP3 receptor density in hepatocytes than Purkinje neurons, rather than differences in receptor isoform, and, more generally, that high InsP3 receptor density promotes fast rising, rapidly inactivating InsP3-evoked [Ca2+]i transients.  相似文献   

7.
PURPOSE: To characterize Ca2+ mobilization by P2 receptors in the bovine corneal endothelial cells (BCEC). METHODS: Changes in intracellular Ca2+ ([Ca2+]i) were measured by fluorescence imaging of cultured and fresh BCEC cells loaded with the Ca2+-sensitive dye Fura-PE3. Relative rates of Ca2+ influx were measured employing Mn2+ as a surrogate for Ca2+. RESULTS: Exposure of cultured cells to uridine 5'-triphosphate (UTP), 2-methyl-thio ATP (msATP) and ATP caused biphasic changes in [Ca2+]i consisting of a peak followed by a plateau phase. Based on the peak responses to 100 microM agonist, the magnitude of UTP responses were similar to that of ATP but greater than that of msATP or ADP. UTP and msATP stimulated Mn2+ influx following [Ca2+]i peak similar to that observed in response to cyclopiazonic acid (CPA), an inhibitor of ER Ca2+-ATPase. Under Ca2+-free conditions, peak responses were similar to those in the presence of external Ca2+, but reduced when the cells were pre-exposed to CPA. Reactive Blue-2 (RB2), inhibited msATP responses by 60.4 +/- 18.8% but UTP responses by only 10.6 +/- 9.5%. Repeated exposures to UTP or msATP reduced [Ca2+]i mobilization indicating homologous desensitization. Response to UTP was not affected by a prior exposure to msATP. However, response to msATP was reduced by a prior exposure to UTP indicating mixed heterologous desensitization. Fresh cells responded to UTP (50 microM) with temporal characteristics of [Ca2+]i mobilization similar to that of cultured cells. CONCLUSION: BCEC express P2 receptors belonging to the P2Y subfamily. The emptying of the IP3-sensitive stores, leading to the initial peak in [Ca2+]i response, subsequently caused capacitative Ca2+ influx leading to the onset of the plateau phase. A significant homologous desensitization to UTP and msATP, selective heterologous desensitization between UTP and msATP, and selective inhibition by RB2 indicate the coexistence of multiple P2Y receptors.  相似文献   

8.
BACKGROUND: The cellular mechanisms that mediate the cardiodepressant effects of intravenous anesthetic agents remain undefined. The objective of this study was to elucidate the direct effects of propofol and ketamine on cardiac excitation-contraction coupling by simultaneously measuring intracellular calcium concentration ([Ca2+]i) and shortening in individual, field-stimulated ventricular myocytes. METHODS: Freshly isolated rat ventricular myocytes were loaded with the Ca2+ indicator, fura-2, and placed on the stage of an inverted fluorescence microscope in a temperature-regulated bath. [Ca2+]i and myocyte shortening (video edge detection) were monitored simultaneously in individual cells that were field-stimulated at 0.3 Hz. RESULTS: Baseline [Ca2+]i (mean +/- SEM) was 80 +/- 12 nM, and resting cell length was 112 +/- 2 microm. Field stimulation increased [Ca2+]i to 350 +/- 23 nM, and the myocytes shortened by 10% of diastolic cell length. Both intravenous anesthetic agents caused dose-dependent decreases in peak [Ca2+]i and shortening. At 300 microM, propofol prolonged time to peak concentration and time to 50% recovery for [Ca2+]i and shortening. In contrast, changes in time to peak concentration and time to 50% recovery in response to ketamine were observed only at the highest concentrations. Neither agent altered the amount of Ca2+ released from intracellular stores in response to caffeine. Propofol but not ketamine, however, caused a leftward shift in the dose-response curve to extracellular Ca2+ for shortening, with no concomitant effect on peak [Ca2+]i. CONCLUSIONS: These results indicate that both intravenous anesthetic agents have a direct negative inotropic effect, which is mediated by a decrease in the availability of [Ca2+]i. Propofol but not ketamine may also alter sarcoplasmic reticulum Ca2+ handling and increase myofilament Ca2+ sensitivity. The effects of propofol and ketamine are primarily apparent at supraclinical concentrations, however.  相似文献   

9.
In order to study the different mechanisms of dynorphin spinal analgesia and neurotoxicity at low and high doses, the effects of various concentrations of dynorphin A-(1-17) on the free intracellular Ca2+ concentration ([Ca2+]i) in the cultured rat spinal neurons were studied using single cell microspectrofluorimetry. While dynorphin A-(1-17) 0.1-100 microM had no significant effect on basal [Ca2+]i, dynorphin A-(1-17) 0.1 and 1 microM significantly decreased the high KCl-evoked peak [Ca2+]i by 94% and 83% respectively. Dynorphin A-(1-17) 10 and 100 microM did not affect the peak [Ca2+]i following K+ depolarization, but in all these neurons there was a sustained and irreversible rise in [Ca2+]i following high-K+ challenge. Pretreatment with the specific kappa-opioid receptor antagonist nor-binaltorphimine 10 microM, but not the competitive NMDA receptor antagonist, DL-2-amino-5-phosphonovalerate (APV) 10 microM, significantly blocked the inhibitory effect of dynorphin A-(1-17) 0.1 microM on peak [Ca2+]i. However, APV 10 microM and nor-binaltorphimine 10 microM significantly antagonized the sustained rise in [Ca2+]i induced by a high concentration of dynorphin A-(1-17) 10 microM. Furthermore, in the presence, and following the addition, of increasing concentrations of dynorphin A-(1-17) (0.1, 1, 10 and 100 microM), the high concentrations of dynorphin A-(1-17) failed to produce a sustained rise in peak [Ca2+]i. These results suggested that dynorphin exerted a dualistic modulatory effect on [Ca2+]i in cultured rat spinal neurons, inducing a sustained and irreversible intracellular Ca2+ overload via activation of both NMDA and kappa-opioid receptors at higher concentrations, but inhibiting depolarization-evoked Ca2+ influx via kappa-opioid but not NMDA receptors at lower concentrations. Serial addition of graded concentrations of dynorphin A-(1-17) prevented the effect of high concentrations of dynorphin A-(1-17) on [Ca2+]i.  相似文献   

10.
We have previously reported that angiotensin II (ANG II) induces oscillations in the cytoplasmic calcium concentration ([Ca2+]i) of pulmonary vascular myocytes. The present work was undertaken to investigate the effect of ANG II in comparison with ATP and caffeine on membrane currents and to explore the relation between these membrane currents and [Ca2+]i. In cells clamped at -60 mV, ANG II (10 microM) or ATP (100 microM) induced an oscillatory inward current. Caffeine (5 mM) induced only one transient inward current. In control conditions, the reversal potential (Erev) of these currents was close to the equilibrium potential for Cl- ions (Ecl = -2.1 mV) and was shifted towards more positive values in low-Cl- solutions. Niflumic acid (10-50 microM) and DIDS (0.25-1 mM) inhibited this inward current. Combined recordings of membrane current and [Ca2+]i by indo-1 microspectrofluorimetry revealed that ANG II- and ATP-induced currents occurred simultaneously with oscillations in [Ca2+]i whereas the caffeine-induced current was accompanied by only one transient increase in [Ca2+]i. Niflumic acid (25 microM) had no effect on agonist-induced [Ca2+]i responses, whereas thapsigargin (1 microM) abolished both membrane current and the [Ca2+]i response. Heparin (5 mg/ml in the pipette solution) inhibited both [Ca2+]i responses and membrane currents induced by ANG II and ATP, but not by caffeine. In pulmonary arterial strips, ANG II-induced contraction was inhibited by niflumic acid (25 microM) or nifedipine (1 microM) to the same extent and the two substances did not have an additive effect. This study demonstrates that, in pulmonary vascular smooth muscle, ANG II, as well as ATP, activate an oscillatory calcium dependent chloride current which is triggered by cyclic increases in [Ca2+]i and that both oscillatory phenomena are primarily IP3-mediated. It is suggested that ANG II-induced oscillatory chloride current could depolarise the cell membrane leading to activation of voltage-operated Ca2+ channels. The resulting Ca2+ influx contributes to the component of ANG II-induced contraction that is equally sensitive to chloride or calcium channel blockade.  相似文献   

11.
Substitution of thiocyanate ions (SCN-) for chloride ions (Cl-) in the extracellular medium of aortic rings and strips causes a biphasic contractile response; initial relaxation followed by sustained contraction. Alterations in these responses are sex-specific, and may elucidate fundamental differences in vascular function between males and females. In order to investigate the role of changes in intracellular Ca2+ ([Ca2+]i) in these changes in tension, we investigated effects of SCN- on [Ca2+]i and ionic currents in vascular smooth muscle cells (VSMC). Extracellular substitution of SCN- for Cl- caused a biphasic change in [Ca2+]i. Initially, [Ca2+]i decreased, reaching a minimum within 1-2 min, subsequently returned to original levels within 4-5 min, and then increased to a higher plateau over the next 10 minutes. This pattern of change in [Ca2+]i is identical to the pattern of tension changes in aortic rings, but it occurs somewhat faster. Partial substitution of SCN- for Cl- elicited increased, but no preceding decrease in [Ca2+]i. In the absence of external Ca2+, anion substitution elicited the decrease in [Ca2+]i but not the subsequent increase. Verapamil (1 microM) blocked the increased [Ca2+]i phase but not the decreased [Ca2+]i phase; whereas, R+ verapamil (up to 5 microM for 20 min), an inactive enantiomer, caused no change. Ionic current measurements obtained using whole cell patch and current clamp techniques revealed two responses to anion substitution: (a) a rapid, transient outward shift in holding current, and (b) a sustained increase in peak current and a hyperpolarizing shift in voltage sensitivity of Ca2+ channels. The calcium channel blocker PN200-110 blocked SCN(-)-enhanced current but had no effect on the changes in holding current. S- verapamil, but not R+ verapamil, reduced SCN(-)-enhanced current. In current clamp mode, SCN- caused an initial hyperpolarization followed by a slow depolarization punctuated by spikes. Thus, SCN- causes changes in vascular smooth muscle [Ca2+]i that could underlie both phases of its effects on tension in isolated aortas and may be explained by the following model: an initial outward shift in current causes hyperpolarization with a consequent decrease in cell excitability, and the somewhat slower increase in Ca2+ channel excitability eventually leads to enhanced calcium influx and tension. These data shed light on possible mechanisms underlying gender-related differences in VSMC physiology.  相似文献   

12.
BACKGROUND: The basal levels of cytosolic calcium ([Ca2+]i) of renal proximal tubular cells of rats with streptozotocin-induced diabetes are elevated. It is possible that this phenomenon is mediated by the hyperglycemia, which may cause both increased calcium influx into and/or decreased calcium efflux out of these cells. METHODS: We examined whether high glucose concentration in vitro causes acute rise in [Ca2+]i of freshly isolated renal proximal tubular cells and explored the pathways that are involved in such an event. RESULTS: There were dose and time dependent increments in [Ca2+]i of renal proximal tubular cells exposed to high concentrations of glucose. A similar effect was observed with equimolar concentrations of mannitol or choline chloride but not urea. A substantial part of the rise in [Ca2+]i was inhibited when the media contained verapamil, nifedipine, amlodipine or ryanodine and when the cells were placed in a calcium free media. Inhibitors of G protein(s) (GDPbetaS or pertussis toxin), inhibitors of cAMP-protein kinase A pathway (RpcAMP or H-89), inhibitors of protein kinase C (staurosporine or calphostin) and inhibitor of Na+-H+ exchanger (HOE 694) blocked the rise in a dose dependent manner. High glucose concentration also caused a decrease in ATP content of these cells and a reduction in the Vmax of their Ca2+ATPase. CONCLUSIONS: The results are consistent with the formulation that the osmotic activity (cell shrinkage) of the high glucose concentration may activate a stretch receptor with subsequent stimulation of various cellular pathways including G protein(s), cAMP-protein kinase A and phospholipase C systems and calcium channels. Activation of these cellular pathways permits both calcium influx into renal tubular cells and mobilization of calcium from their intracellular stores. Further, a decrease in calcium efflux secondary to the reduction in the Vmax of Ca2+ ATPase may occur. It is possible that the rise in [Ca2+]i is critical for the stimulation of the events that lead to restoration of cell volume to normal.  相似文献   

13.
1. The effect of cilostazol, an inhibitor of phosphodiesterase type III (PDE III), on the contraction induced by histamine was studied by making simultaneous measurements of isometric force and the intracellular concentration of Ca2+ ([Ca2+]i) in endothelium-denuded muscle strips from the peripheral part of the middle cerebral artery of the rabbit. 2. High K+ (80 mM) produced a phasic, followed by a tonic increase in both [Ca2+]i and force. Cilostazol (10 microM) did not modify the resting [Ca2+]i, but it did significantly decrease the tonic contraction induced by high K+ without a corresponding change in the [Ca2+]i response. 3. Histamine (3 microM) produced a phasic, followed by a tonic increase in both [Ca2+]i and force. Cilostazol (3 and 10 microM) significantly reduced both the phasic and tonic increases in [Ca2+]i and force induced by histamine, in a concentration-dependent manner. 4. Rp-adenosine-3':5'-cyclic monophosphorothioate (Rp-cAMPS, 0.1 mM), a PDE-resistant inhibitor of protein kinase A (and as such a cyclic AMP antagonist), did not modify the increases in [Ca2+]i and force induced by histamine alone, but it did significantly decrease the cilostazol-induced inhibition of the histamine-induced responses. 5. In Ca2+-free solution containing 2 mM EGTA, both histamine (3 microM) and caffeine (10 mM) transiently increased [Ca2+]i and force. Cilostazol (1-10 microM) (i) significantly reduced the increases in [Ca2+]i and force induced by histamine, and (ii) significantly reduced the increase in force but not the increase in [Ca2+]i induced by caffeine. 6. In ryanodine-treated strips, which had functionally lost the histamine-sensitive Ca2+ storage sites, histamine (3 microM) slowly increased [Ca2+]i and force. Cilostazol (3 and 10 microM) lowered the resting [Ca2+]i, but did not modify the histamine-induced increase in [Ca2+]i, suggesting that functional Ca2+ storage sites are required for the cilostazol-induced inhibition of histamine-induced Ca2+ mobilization. 7. The [Ca2+]i-force relationship was obtained in ryanodine-treated strips by applying ascending concentrations of Ca2+ (0.16-2.6 mM) in Ca2+-free solution containing 100 mM K+. Histamine (3 microM) shifted the [Ca2+]i-force relationship to the left and increased the maximum Ca2+-induced force. Under the same conditions, whether in the presence or absence of 3 microM histamine, cilostazol (3-10 microM) shifted the [Ca2+]i-force relationship to the right without producing a change in the maximum Ca2+-induced force. 8. It is concluded that, in smooth muscle of the peripheral part of the rabbit middle cerebral artery, cilostazol attenuates the histamine-induced contraction both by inhibiting histamine-induced Ca2+ mobilization and by reducing the myofilament Ca2+ sensitivity. It is suggested that the increase in the cellular concentration of cyclic AMP that will follow the inhibition of PDE III may play an important role in the cilostazol-induced inhibition of the histamine-contraction.  相似文献   

14.
1. The effects of exogenous adenosine 5'-triphosphate (ATP) and alpha,beta-methylene ATP (alpha,beta meATP) on C6BU-1 cells transfected with P2X2 and P2X3 subtypes, separately or together (P2X2+3), were investigated using fura-2 fluorescence recording and whole-cell patch clamp recording methods. 2. Untransfected C6BU-1 cells showed no intracellular Ca2+ ([Ca2+]i) increase in response to depolarizing stimulation with high K+ or stimulation with ATP. There was no current induced by ATP under voltage clamp conditions in untransfected C6BU-1 cells. ATP caused Ca2+ influx only from extracellular sources in C6BU-1 cells transfected with the P2X subtypes, suggesting that the C6BU-1 cell line is suitable for the characterization of Ca2+ influx through the P2X subtypes. 3. In C6BU-1 cells transfected with the P2X2 subtype, ATP (more than 10 microM) but not alpha,beta meATP (up to 100 microM) evoked a rise in [Ca2+]i. 4. In the cells transfected with the P2X3 subtype, current responses under voltage clamp conditions were observed at ATP concentrations higher than 0.1 microM of alpha,beta meATP were required. This discrepancy in the concentration dependence of the agonist responses with respect to the [Ca2+]i rise and the current response was seen only with the P2X3 subtype. In addition, the agonist-induced rise in [Ca2+]i was observed only after the first application because of desensitization of this subtype. 5. In C6BU-1 cells co-transfected with P2X2 and P2X3, ATP at 1 microM evoked a [Ca2+]i rise. This responsiveness was higher than that of the other subtype combinations tested. The efficiency of expression was improved by co-transfection with P2X2 and P2X3, when compared to transfection with the P2X3 subtype alone. The desensitization of the P2X2+3 was apparently slower than that of the P2X3 subtype alone. Therefore, this combination could respond to the repeated application of agonists each time with a [Ca2+]i rise. 6. These results suggest that the P2X2 and P2X3 subtypes assemble a heteromultimer and that this heterogeneous expression acquires more effective Ca2+ dynamics than that by homogeneously expressed P2X2 or P2X3.  相似文献   

15.
1. The effects of extracellular adenosine 5'-triphosphate (ATP) on smooth muscles are mediated by a variety of purinoceptors. In this study we addressed the identity of the purinoceptors on smooth muscle cells (SMC) cultured from human large coronary arteries. Purinoceptor-mediated increases in [Ca2+]i were measured in single fura-2 loaded cells by applying a digital imaging technique, and the formation of inositol phosphate compounds was quantified after separation on an anion exchange column. 2. Stimulation of the human coronary artery SMC (HCASMC) with extracellular ATP at concentrations of 0.1-100 microM induced a transient increase in [Ca2+]i from a resting level of 49 +/- 21 nM to a maximum of 436 +/- 19 nM. The effect was dose-dependent with an EC50 value for ATP of 2.2 microM. 3. The rise in [Ca2+]i was independent of the presence of external Ca2+, but was abolished after depletion of intracellular stores by incubation with 100 nM thapsigargin. 4. [Ca2+]i was measured upon stimulation of the cells with 0.1-100 microM of the more specific P2-purinoceptor agonists alpha, beta-methyleneadenosine 5'-triphosphate (alpha,beta-MeATP), 2-methylthioadenosine 5'-triphosphate (2MeSATP) and uridine 5'-triphosphate (UTP). alpha, beta-MeATP was without effect, whereas 2MeSATP and UTP induced release of Ca2+ from internal stores with 2MeSATP being the most potent agonist (EC50 = 0.17 microM), and UTP having a potency similar to ATP. The P1 purinoceptor agonist adenosine (100 microM) did not induce any changes in [Ca2+]i. 5. Stimulation with a submaximal concentration of UTP (10 microM) abolished a subsequent ATP-induced increase in [Ca2+]i, whereas an increase was induced by ATP after stimulation with 10 microM 2MeSATP. 6. The phospholipase C (PLC) inhibitor U73122 (5 microM) abolished the purinoceptor-activated rise in [Ca2+]i, whereas pretreatment with the Gi protein inhibitor pertussis toxin (PTX, 500 ng ml-1) was without effect on ATP-evoked [Ca2+]i increases. 7. Receptor activation with UTP and ATP resulted in formation of inositol phosphates with peak levels of inositol 1, 4, 5-trisphosphate (Ins(1, 4, 5)P3) observed 5-20 s after stimulation. 8. These findings show, that cultured HCASMC express G protein-coupled purinoceptors, which upon stimulation activate PLC to induce enhanced Ins(1, 4, 5)P3 production causing release of Ca2+ from internal stores. Since a release of Ca2+ was induced by 2MeSATP as well as by UTP, the data indicate that P2y- as well as P2U-purinoceptors are expressed by the HCASMC.  相似文献   

16.
Intracellular calcium ion ([Ca2+]i) transients were measured in voltage-clamped rat cardiac myocytes with fura-2 or furaptra to quantitate rapid changes in [Ca2+]i. Patch electrode solutions contained the K+ salt of fura-2 (50 microM) or furaptra (300 microM). With identical experimental conditions, peak amplitude of stimulated [Ca2+]i transients in furaptra-loaded myocytes was 4- to 6-fold greater than that in fura-2-loaded cells. To determine the reason for this discrepancy, intracellular fura-2 Ca2+ buffering, kinetics of Ca2+ binding, and optical properties were examined. Decreasing cellular fura-2 concentration by lowering electrode fura-2 concentration 5-fold, decreased the difference between the amplitudes of [Ca2+]i transients in fura-2 and furaptra-loaded myocytes by twofold. Thus, fura-2 buffers [Ca2+]i under these conditions; however, Ca2+ buffering is not the only factor that explains the different amplitudes of the [Ca2+]i transients measured with these indicators. From the temporal comparison of the [Ca2+]i transients measured with fura-2 and furaptra, the apparent reverse rate constant for Ca2+ binding of fura-2 was at least 65s-1, much faster than previously reported in skeletal muscle fibers. These binding kinetics do not explain the difference in the size of the [Ca2+]i transients reported by fura-2 and furaptra. Parameters for fura-2 calibration, Rmin, Rmax, and beta, were obtained in salt solutions (in vitro) and in myocytes exposed to the Ca2+ ionophore, 4-Br A23187, in EGTA-buffered solutions (in situ). Calibration of fura-2 fluorescence signals with these in situ parameters yielded [Ca2+]i transients whose peak amplitude was 50-100% larger than those calculated with in vitro parameters. Thus, in vitro calibration of fura-2 fluorescence significantly underestimates the amplitude of the [Ca2+]i transient. These data suggest that the difference in amplitude of [Ca2+]i transients in fura-2 and furaptra-loaded myocytes is due, in part, to Ca2+ buffering by fura-2 and use of in vitro calibration parameters.  相似文献   

17.
We describe a system we developed that enabled simultaneous measurements of either epithelial calcium ion concentration ([Ca2+]i) or sodium ion concentration ([Na+]i) with the ciliary beat frequency (CBF) in native ciliated epithelia using either Fura-2 (AM) or SBFI (AM) ratiometric fluorescence photon counting along with nonstationary laser light scattering. Studies were performed using native epithelial tissues obtained from ovine tracheae. The dynamic range of the laser light-scattering system was determined by a simulated light "beating" experiment. The nonstationary CBF was demonstrated by the time-frequency analysis of the raw photon count sequences of backscattered heterodyne photons from cultured and native epithelia. Calibrations of calcium and sodium ion concentrations were performed using the respective Fura-2 and SBFI impermanent salts as well as in native epithelia. The cumulative responses of 10(-6), 10(-5), and 10(-4) M nifedipine on [Ca2+]i together with the CBF as well as the cumulative responses of 10(-5), 10(-4), and 10(-3) M amiloride on [Na+]i together with the CBF were also determined. Nifedipine decreased [Ca2+]i but had no effect on CBF. Amiloride decreased [Na+]i and CBF. Stimulation of CBF corresponded with either an increase of [Na+]i or an increase of [Ca2+]i. Decreases of [Na+]i or substantial decreases of [Ca2+]i were associated with decreases in the CBF. These data demonstrate the utility of this system for investigating the regulatory mechanisms of intracellular ions dynamics and the CBF in native epithelia.  相似文献   

18.
Basal levels of [Ca2+]i are elevated in diabetes mellitus. Such an abnormality is most likely due to both increased calcium influx into cells and decreased efflux of this ion out of the cells. The present study examined the cellular pathways that are responsible for hyperglycemia-induced acute rise in polymorphonuclear leukocytes (PMNL), and explored whether such a rise is due to increased calcium entry into PMNL and/or to calcium release from their intracellular stores. There were dose dependent and time dependent rises in the [Ca2+]i of PMNL exposed to high concentrations of glucose. Similar effects were observed when the PMNL were exposed to high concentrations of choline chloride or mannitol. A substantial part of the rise in [Ca2+]i was inhibited when the media contained verapamil or nifedipine or when the PMNL were placed in calcium free media, and the rise in [Ca2+]i was completely abolished when the PMNL were placed in calcium free media containing ryanodine. GDP beta S or pertussis toxin almost completely prevented the glucose-induced rise in [Ca2+]i of PMNL. Rp-cAMP, H-89 or staurosporine produced significant inhibition of the rise in [Ca2+]i. High concentrations of glucose produced a dose dependent shrinkage of PMNL volume over a period of two hours. The volume of PMNL, however, was normal after 24 hours in vitro incubation studies as well as after 1, 2 and 12 days of streptozotocin-induced hyperglycemia in rats. The results are consistent with the formulation that the osmotic activity (cell shrinkage) of the high glucose concentrations activates G protein(s) which then stimulates the adenylate-cAMP-protein kinase A pathway, phospholipase C system and calcium channels. The stimulation of these cellular pathways permits both calcium influx into the PMNL as well as mobilization of calcium from their intracellular stores. Both of these events contribute to the acute rise in their [Ca2+]i. It is possible that the rise in [Ca2+]i is critical for the stimulation of the events that lead to the generation and accumulation of inorganic osmolytes to restore cell volume to normal.  相似文献   

19.
BACKGROUND: To elucidate the molecular mechanism underlying sphingosine 1-phosphate (S1P) and sphingosylphosphorylcholine (SPC) mediated signaling, we compared their effects with those of adenosine triphosphate (ATP) and angiotensin II (Ang II) on the cytosolic free Ca2+ concentration ([Ca2+]i), inositol 1,4, 5-trisphosphate (IP3) generation and arachidonic acid release in rat glomerular mesangial cells. METHODS: The fluorescent Ca2+ indicator, Fura-2, was used to measure the [Ca2+]i changes in cultured rat glomerular mesangial cells either in suspension or attached to the coverslips. RESULTS: SPC 5 microM, S1P 5 microM, ATP 100 microM and Ang II 90 nM all induced increases in the [Ca2+]i, and the effect showed marked homologous desensitization, while heterologous desensitization was less. After the initial exposure of the cells to SPC, the increase in [Ca2+]i induced by subsequent addition of ATP or Ang II was only reduced by about 14.3% and 4.8%, respectively. After the initial exposure to S1P, a greater reduction was seen (42. 1% and 47.7%, respectively). Both arachidonic acid release and IP3 generation were activated by all four agonists with an identical rank order of effectiveness of SPC > S1P > ATP = Ang II; both were pertussis toxin-sensitive and cholera toxin-resistant. The arachidonic acid release induced by all four agonists showed identical susceptibility to removal of extracellular Ca2+, whereas IP3 generation displayed differential extracellular Ca2+ dependence. Only SPC-induced IP3 generation was highly sensitive to extracellular Ca2+ level, and this Ca2+ dependence was abolished after pretreatment of cells with arachidonyl trifluoromethyl ketone (AACOCF3), a phospholipase A2 inhibitor. Furthermore, the Mn2+ influx was markedly greater in SPC-stimulated cells than in either control or other agonist-stimulated cells, and was decreased by prior exposure of cells to AACOCF3. After phospholipase A2 was inhibited or in the absence of extracellular Ca2+, SPC displayed identical effectiveness as S1P on desensitizing the action of ATP or Ang II on the increase in [Ca2+]i. Conclusions. Our results indicate that all four agents primarily activate phospholipase C through their receptor occupancies, but that SPC alone also induces further significant Mn2+ influx and IP3 generation attributable to its primary stimulatory effect on arachidonic acid release. Thus, the heterologous desensitization to ATP or Ang II induced by SPC was less profound than that induced by S1P, since SPC induced a Ca2+ influx.  相似文献   

20.
[Ca2+]i homeostasis in individual PC12 cells after elevated [K+]o was studied by ratiometric microscopy, during nerve growth factor (NGF) deprivation. A significantly lower number of cells responded with an increased [Ca2+]i in the NGF deprived condition. Moreover, the responding cells were more deficient in regulating their [Ca2+]i back to control levels, after the transient peak. This suggests that differentiated neurons do not traverse the apoptotic program homogeneously with regard to their [Ca2+]i regulation and that NGF deprived PC12 cells have more difficulties to reduce their [Ca2+]i after influx of [Ca2+]o.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号