首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mg-4Al-xCe/La-0.3Mn (Ce/La: mixture of Ce and La, x = 1, 2, 4 and 6 wt.%) alloys were prepared by high-pressure die-casting. The microstructures, mechanical properties and thermal stability were investigated. The cross-section of test bar could be divided into the fine skin region and the relatively coarse interior region. Two binary Al-(Ce, La) phases with the former being the dominant one, Al11(Ce, La)3 and Al2(Ce, La), are mainly distributed along the dendrite boundaries, and La prefers to exist in Al11(Ce, La)3. The alloy with 4 wt.% Ce/La exhibits high tensile properties and good heat resistance until 200 °C, which were mainly attributed to the fine dendritic arm spacing and the main strengthening phase Al11(Ce, La)3, which is present in high volume fraction, and possesses fine rod-like morphology, network or “orderly stack” distribution and good thermal stability. The results of this research provide a basis for further investigation of the new low cost high-pressure die-cast Mg-Al-RE alloys designed to serve at temperature up to 200 °C.  相似文献   

2.
Phonon thermal anomalies in α-titanium are studied by means of tight-binding microcanonical molecular dynamics simulations. The frequencies of the zone centre [0001]LO and TO phonons, and the [0001]TA phonon at are determined at different temperatures via the power spectrum of the autocorrelation function associated with the corresponding projections of atomic velocities. It is shown that even at very low temperatures the effects of anharmonicity in vibrational properties are strong and dependent on both wave propagation direction and frequency. In particular, the frequencies of the TO and TA phonons are shown to decrease while the frequency of the [0001]LO phonon increases with crystal temperature, in agreement with experiment.  相似文献   

3.
Thermal stability of the nanostructured grains of cold-rolled Ti–24Nb–4Zr–7.9Sn alloy and corresponding variations in mechanical properties were investigated. The activation energy for grain growth was found distinct below and above the ( + β)/β transus of 950 K, with values of 47 and 206 kJ/mol, respectively. Due to the pinning effect of the precipitates at β grain boundaries, grains sizes can be maintained at less than 100 nm during prolonged annealing at temperatures up to 773 K, and are less than 1 μm for annealing temperature up to 923 K and time up to 2 h. Annealing above the β transus resulted in coarse grains with sizes of tens of micrometers in less than 2 h. Tensile and hardness tests showed rapid strengthening with the increase of annealing time below 773 K, which was attributed to both the rapid formation of nano-sized precipitates and the slow growth rate of β grains. By adjusting the grain size of the cold-rolled material the high strength/low Young's modulus match desirable for implant applications can be improved over the hot-rolled bars with coarse grains.  相似文献   

4.
A comparison is made between the measured α/β phase fractions in Ti-6246 using X-ray diffraction (XRD) and electron microscopy. Image analysis of SEM and TEM images was compared to the phase fraction estimate obtained using electron backscattered diffraction, lab and high-energy synchrotron XRD. There was a good agreement between the electron microscopic and diffraction techniques, provided that the microstructural parameters of grain size and texture are estimated correctly when using quantitative Rietveld refinement.  相似文献   

5.
The Ti–30Zr–5Al–3V (wt.%, TZAV-30) alloy having good mechanical properties is a potential structural material to apply in the aerospace industry. The microstructure and mechanical properties of ZTAV-30 alloy underwent various annealing heat treatments were investigated. The specimens annealed from 500 to 800 °C are composed of α and β two phases. No compound is detected in specimens annealed in that temperature range. The microstructure of annealed specimens is characterized as a typical basketweave microstructure. Three microstructural parameters, thickness of plate α phase, relative fraction of β phase and aspect ratio of α grains, were measured in those annealed specimens. As the alloy annealed in the range from 500 to 800 °C, the average thickness of plate α grains increases with the increasing annealing temperature from 500 to 700 °C but decreases while annealed at 800 °C. The fraction of retained β phase increases with annealing temperature. And the aspect ratio of plate α grains decreases firstly but increases while the annealing temperature is higher than 700 °C. As the variation of those three microstructural parameters, the strength of examined alloy varies from 1269 to 1355 MPa for tensile strength and from 1101 to 1190 MPa for yield strength, inversely, the elongation changes in the range from 12.7% to 8.4%. The strengthening and toughening mechanism of the TZAV-30 alloy with basketweave microstructure is also discussed in this paper.  相似文献   

6.
Abstract

Hydrogen can be used as a temporary element to refine microstructure and improve workability of titanium alloys. In this article, the influence of hydrogen on the microstructure evolution and tensile properties of TC21 alloy is investigated. The microstructure observation reveals that the FCC hydrides δ precipitate firstly at the grainboundaries of primary α phases in TC21 alloy with hydrogen contents above 0·319 wt-%. These hydrides which block the grains deformation reduce both the strength and ductility at room temperature. With increasing hydrogen contents, the elevated temperature strength decreases first and then increases, while the ductility behaves the contrary. These are resulted from the interaction of hydrogen induced softening and hardening.  相似文献   

7.
Fatigue crack initiation behaviour is investigated at room temperature in the (α2-Ti3Al and γ-TiAl) alloy. High cycle fatigue tests ranging up to 1010 cycles are carried out on the powder metallurgy (P/M) bar specimens under different loading conditions with a stress ratio of R=0.1 and R=0.5. Microstructural characterization and fracture surface analysis are also investigated by optical (OM) and scanning electron microscopy (SEM). Ti–Al alloy studied here shows two phases in microstructure (nearly refined lamellar thickness) composed of α2-Ti3Al and γ-TiAl (hereafter called γ+α2 alloys) and fracture mechanism is explained with different plastic incompatibilities between the two phases.  相似文献   

8.
This study aimed at investigating the influence of the processing conditions on the mechanical properties of hot pressed compacts of a CoCrMo biomedical alloy.Several hot pressed CoCrMo compacts were processed in vacuum (10−2 mbar), at a pressure of 60 MPa with different temperatures (900 °C, 1000 °C and 1100 °C) and different times (10 min, 30 min and 60 min). Compacts were examined by SEM/EDS. The transverse rupture strength, Young’s Moduli and hardness were determined. The fracture surface of compacts were also examined.The compacts hot pressed at 900 °C exhibited lower TRS than those processed at 1000 °C and 1100 °C, which showed similar strength values, regardless the sintering time. The 900 °C compacts showed also lower YM and higher porosity. Lower hardness values were registered for 900 °C compacts while 1000 °C compacts exhibited the highest values. The fracture surface analyses revealed fragile fracture for 900 °C compacts (10 min and 30 min) and 1000 °C (10 min). The remaining compacts exhibited ductile fracture.A full characterization of the mechanical properties of hot pressed CoCrMo compacts has been made and the selection of the processing parameters according to the desired mechanical properties is now possible.  相似文献   

9.
The influence of the plasma-sprayed coatings and of the atmosphere on creep of the Ti–6Al–4V alloy was investigated. Yttria partially stabilized zirconia (YSZ) with CoNiCrAlY bond coat was atmospherically plasma sprayed on Ti–6Al–4V substrates. Constant load creep tests were conducted on a standard creep machine in air and nitrogen atmospheres on uncoated samples and in air on coated samples, at stress levels of 520 MPa at 500 °C, 319 MPa at 600 °C and 56 MPa at 700 °C. Results indicated that the creep rates in nitrogen and of the coated alloy were lower than those of the uncoated in air.  相似文献   

10.
Transmission electron microscopy (TEM) of a bimodal near-α titanium alloy revealed the existence of retained β phase layers and silicide precipitates at the α platelet boundaries inside transformed β grains. The β to α phase transformation accompanied by the precipitation of silicide resulted in the formation of a large number of dislocations at α platelet boundaries. Orientation relationships between silicide, β phase and α phase were also identified. However high-resolution TEM (HRTEM) revealed crystal mismatches between these phases generating high strains at α platelet boundaries. The strengthening effects of the platelet boundaries are discussed in terms of dislocations slip across the boundaries. The mechanism that governs the β to α phase transformation is also discussed.  相似文献   

11.
12.
This work aims to establish the effect of laser energy area density(EAD) as the laser incident energy on density, microstructures and mechanical properties of direct laser deposition(DLD) 12CrNi2 Y alloy steel.The results show that the density of DLD 12CrNi2 Y alloy steel increases at initial stage and then decreases with an increase of EAD, the highest density of alloy steel sample is 98.95%. The microstructures of DLD12CrNi2 Y alloy steel samples are composed of bainite, ferrite and carbide. With increase of EAD, the microstructures transform from polygonal ferrite(PF) to granular bainite(GB). The martensite-austenite constituent(M-A) in GB transforms from flake-like paralleling to the bainite ferrite laths to granular morphology. It is also found that the average width of laths in finer GB can be refined from 532 nm to 302 nm, which improves the comprehensive properties of DLD 12 CrNi2 Y alloy steel such as high hardness of 342 ± 9 HV_(0.2), yield strength of 702 ± 16 MPa, tensile strength of 901 ± 14 MPa and large elongation of15.2%±0.6%. The DLD 12CrNi2 Y material with good strength and toughness could meet the demand of alloy steel components manufacturing.  相似文献   

13.
Microstructures and tensile properties of Mg-5Al-0.3Mn-xSm (x = 0, 1, 2 and 3 wt.%) alloys prepared by metal mould casting method were investigated. It was demonstrated that Mg-5Al-0.3Mn alloy was mainly composed of α-Mg and β-Mg17Al12 phases. However, the other two precipitates (Al11Sm3 and Al2Sm) were observed along grain boundaries in the alloys containing Sm. The amount of Al11Sm3 and Al2Sm precipitates was increased with the increment of Sm content. Meanwhile, volume fraction of β-Mg17Al12 phase was decreased. Moreover, the morphology of β-Mg17Al12 was altered from bulk bone-like shape to spherical one. Tensile results showed that Mg-5Al-0.3Mn-2Sm alloy exhibited the highest tensile properties both at room temperature and 150 °C. Compared with ultimate tensile strength (UTS), yield strength (YS) and elongation (?) of Mg-5Al-0.3Mn alloy, UTS, YS and ? of Mg-5Al-0.3Mn-2Sm alloy were enhanced by 30%, 45% and 35% at room temperature, and by 17%, 48% and 96% at 150 °C, respectively. The improvement of tensile properties was attributed to the decreased amount of β-Mg17Al12 and its refined morphology, and high thermal stable Al11Sm3 and Al2Sm precipitates which effectively prohibited dislocation movement and grain boundary sliding during deformation process.  相似文献   

14.
The effects of molybdenum on the structure and mechanical properties of a Ti-10Zr-based system were studied with an emphasis on improving the strength/modulus ratio. Commercially pure titanium (c.p. Ti) was used as a control. As-cast Ti-10Zr and a series of Ti-10Zr-xMo (x = 1, 3, 5, 7.5, 10, 12.5, 15, 17.5 and 20 wt.%) alloys prepared using a commercial arc-melting vacuum pressure casting system were investigated. X-ray diffraction (XRD) for phase analysis was conducted with a diffractometer. Three-point bending tests were performed to evaluate the mechanical properties of all specimens. The experimental results indicated that these alloys had different structures and mechanical properties when various amounts of Mo were added. The as-cast Ti-10Zr has a hexagonal α′ phase, and when 1 wt.% Mo was introduced into the Ti-10Zr alloy, the structure remained essentially unchanged. However, with 3 or 5 wt.%, the martensitic α″ structure was found. When increased to 7.5 wt.% or greater, retention of the metastable β phase began. The ω phase was observed only in the Ti-10Zr-7.5Mo alloy. Among all Ti-10Zr-xMo alloys, the α″-phase Ti-10Zr-5Mo alloy had the lowest elastic modulus. It is noteworthy that all the Ti-10Zr and Ti-10Zr-xMo alloys had good ductility. In addition, the Ti-10Zr-5Mo and Ti-10Zr-12.5Mo alloys exhibited higher bending strength/modulus ratios at 20.1 and 20.4, respectively. Furthermore, the elastically recoverable angles of these two alloys (26.4° and 24.6°, respectively) were much greater than those of c.p. Ti (2.7°). Given the importance of these properties for implant materials, the low modulus, excellent elastic recovery capability and high strength/modulus ratio of α″ phase Ti-10Zr-5Mo and β phase Ti-10Zr-12.5Mo alloys appear to make them promising candidates.  相似文献   

15.
A research investigation has been undertaken to identify the various stages and variation of welding parameters in friction taper plug welding (FTPW) process and to explore their effects on the performance and properties of the welds. According to the variation of axial force, the overall FTPW process is divided into feeding phase, pressing phase, welding phase, and forging phase. The rotating speed, welding force, and burn-off rate remain nearly constant in welding phase. However, the torque peaks in welding phase when after few seconds of welding force setting is reached. Rising the welding force would increase the peak torque, welding torque, and burn-off rate, but decrease the welding time. When improper welding parameter is used lack of bonding and incomplete filling defects would form within the weld. The microstructure of the weld metal is consist of retained austenite, pearlite, and various Widmanstätten ferrite. In heat affect zone, it is mainly of lathy upper bainite. Defect free welds exhibit favorable tensile properties of which 548.3 MPa tensile strength and 27.5% elongation that equal to the base metal could be found.  相似文献   

16.
In this experiment, pure PBSU fibers, PBSU/12.5% β-CaSiO3, and PBSU/25% β-CaSiO3 composite fibers were fabricated by electrospinning. In order to investigate the effects of surface modification of β-CaSiO3 on composite fibers, β-CaSiO3 nanowires were surface esterified using dodecyl alcohol. SEM micrographs showed that composite materials with modified β-CaSiO3 have homogeneous fibrous structures similar as that of pure PBSU fibers, while the fibers containing unmodified β-CaSiO3 were inhomogeneous and much larger in diameter, and also junctions where β-CaSiO3 agglomerated could be found. Mechanical testing showed that with the addition of unmodified β-CaSiO3 into PBSU matrix, the tensile strength of fibrous materials decreased obviously, and the decrease degree increased with increased β-CaSiO3 content. However, the tensile stresses of composite materials after surface modification of β-CaSiO3 turned back and increased about 40% compared to those containing unmodified β-CaSiO3. All of these results suggested surface modification of β-CaSiO3 was an effective approach to obtain composite fibrous materials with better morphologies and enhanced mechanical properties, and this method is supposed to be feasible in other fibrous material systems.  相似文献   

17.
Titanium oxide thin films were deposited by radiofrequency reactive sputtering in Ar-O2 atmosphere on silicon (100) wafers and titanium alloy plates (Ti-6Al-4V). Thin films structural characterization was carried out by grazing incidence X-ray diffraction, atomic force microscopy, scanning and transmission electron microscopies. Chemical composition was checked by X-ray wavelength dispersive spectroscopy. Mechanical assessment was achieved by nano-indentation and nano-scratch measurements. The films deposited on silicon substrates are over-stoechiometric in oxygen, with an oxygen to titanium ratio of about 2.2. The growth of anatase and rutile phases was promoted by ranging the total and oxygen partial pressures between 0.17-1.47 Pa and 35-85%. The growth rate of films, determined by grazing incidence X-ray reflectivity, was ranging from 35 to 55 nm/h. The rutile single-phased films possess a hardness of about 2.5 times higher and a lower friction coefficient than the anatase films. The films which contain anatase possess a high surface root-mean-square roughness and a reduced elastic modulus of around 120 GPa close to reduced elastic moduli of hydroxyapatite bioceramic and titanium alloy. So the anatase film could be the best candidate as a titanium oxide intermediate layer between hydroxyapatite and titanium alloy in the field of biomedical implants.  相似文献   

18.
The effect of Al2O3 particles on microhardness and room-temperature compression properties of directionally solidified (DS) intermetallic Ti–46Al–2W–0.5Si (at.%) alloy was studied. The ingots with various volume fractions of Al2O3 particles and mean 22 interlamellar spacings were prepared by directional solidification at constant growth rates ranging from 2.78×10−6 to 1.18×10−4 ms−1 in alumina moulds. The ingots with constant volume fraction of Al2O3 particles and various mean interlamellar spacings were prepared by directional solidification at a growth rate of 1.18×10−4 ms−1 and subsequent solution annealing followed by cooling at constant rates varying between 0.078 and 1.889 K s−1. The mean 22 interlamellar spacing λ for both DS and heat-treated (HT) ingots decreased with increasing cooling rate according to the relationship λ−0.46. In DS ingots, microhardness, ultimate compression strength, yield strength and plastic deformation to fracture increased with increasing cooling rate. In HT ingots, microhardness and yield strength increased and ultimate compression strength and plastic deformation to fracture decreased with increasing cooling rate. The yield stress increased with decreasing interlamellar spacing and increasing volume fraction of Al2O3 particles. A linear relationship between the Vickers microhardness and yield stress was found for both DS and HT ingots. A simple model including the effect of interlamellar spacing and increasing volume fraction of Al2O3 particles was proposed for the prediction of the yield stress.  相似文献   

19.
Abstract

This study details the development of microstructure of Ti14 alloy as a function of the forging temperature and forging ratio in semisolid state and influence of resulting microstructure on the mechanical properties. The results reveal that dynamic recrystallisation occurred during semisolid forging, and the grain refinement was attained. Grain size increased in the forging temperature and decreased in the forging ratio. High ultimate tensile strengths and low elongation have been achieved after semisolid forging. The strength decreased with increasing forging temperature, while the ductility increased with increasing forging ratio. The relative contributions of tensile properties were attributed to the varieties of grain size obtained by thixoforging.  相似文献   

20.
Dense TiC–Al2O3–Al composite was prepared with Al, C and TiO2 powders by means of electric field-activated combustion synthesis and infiltration of the molten metal (here Al) into the synthesized TiC–Al2O3 ceramic. An external electric field can effectively improve the adiabatic combustion temperature of the reactive system and overcome the thermodynamic limitation of reaction with x < 10 mol. Thereby, it can induce a self-sustaining combustion synthesis process. During the formation of Al2O3–TiC–Al composite, Al is molten first, and reacted with TiO2 to form Al2O3, followed by the formation of TiC through the reaction between the displaced Ti and C. Highly dense TiC–Al2O3–Al with relative density of up to 92.5% was directly fabricated with the application of a 14 mol excess Al content and a 25 V cm−1 field strength, in which TiC and Al2O3 particles possess fine-structured sizes of 0.2–1.0 μm, with uniform distribution in metal Al. The hardness, bending strength and fracture toughness of the synthesized TiC–Al2O3–Al composite are 56.5 GPa, 531 MPa and 10.96 MPa m1/2, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号