首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An experimental investigation on the thermal decomposition of CH4 into C and H2 was carried out using a 5 kW particle-flow solar chemical reactor tested in a solar furnace in the 1300–1600 K range. The reactor features a continuous flow of CH4 laden with μm-sized carbon black particles, confined to a cavity receiver and directly exposed to concentrated solar irradiation of up to 1720 suns. The reactor performance was examined for varying operational parameters, namely the solar power input, seed particle volume fraction, gas volume flow rate, and CH4 molar concentration. Methane conversion and hydrogen yield exceeding 95% were obtained at residence times of less than 2.0 s. A solar-to-chemical energy conversion efficiency of 16% was experimentally reached, and a maximum value of 31% was numerically predicted for a pure methane flow. SEM images revealed the formation filamentous agglomerations on the surface of the seed particles, reducing their active specific surface area.  相似文献   

2.
A transient heat transfer model is developed for a reacting flow of CH4 laden with carbon particles directly exposed to concentrated solar radiation and undergoing thermal decomposition into carbon and hydrogen. The unsteady mass and energy conservation equations, coupling convective heat and mass transfer, radiative heat transfer, and chemical kinetics for a two-phase solid–gas flow, are formulated and solved numerically for both phases by Monte Carlo and finite volume methods using the explicit Euler time integration scheme. Parametric study is performed with respect to the initial particle diameter, volume fraction, gas composition, and velocity. Validation is accomplished by comparing temperatures and reaction extent with those measured experimentally using a particle-flow solar reactor prototype subjected to concentrated solar radiation. Smaller particles and/or high volume fractions increase the optical thickness of the medium, its radiative absorption and extinction coefficients, and lead to higher steady-state temperatures, reaction rates, and consequently, higher extent of chemical conversion.  相似文献   

3.
Studies on gas–solid heat transfer during pneumatic conveying   总被引:1,自引:0,他引:1  
Interactions between solids and gas during pneumatic conveying can be utilized for variety of applications including flash drying, solids preheating etc. Experiments on air–solid heat transfer were carried out in a vertical pneumatic conveying heat exchanger of 54 mm inside diameter, using gypsum as the solid material. The effect of solids feed rate (0.6–9.9 g/s), air velocity (4.21–6.47 m/s) and particle size (231–722.5 μm) on air–solid heat transfer rate, heat transfer area and air–solid heat transfer coefficient has been studied. Empirical correlations have been proposed for the prediction of Nusselt number based on the present experimental data. The proposed correlations predict Nusselt number within an error of ±15% for the present data.  相似文献   

4.
A self-consistent model of heat transfer in moderate to large particle gas fluidized beds is constructed by combining the convective heat transfer model of Adams and Welty [A.I.Ch.E. Jl25, 395–405 (1979)] with a numerical analysis of transient conduction within the solid particles to obtain the particle convective contribution to the heat transfer. Computations using an ADI finite difference scheme reveal that the particle convective contribution is weakly dependent on Reynolds number but strongly affected by gas and solid thermal conductivity and particle Fourier number. Time-averaged emulsion phase Nusselt numbers computed using the model are compared with available experimental data.  相似文献   

5.
The solar chemical reactor technology for the steam-gasification of petcoke is presented. The reactor features a continuous vortex flow of steam laden with petcoke particles confined to a cavity receiver and directly exposed to concentrated solar radiation. A 5 kW prototype reactor tested in a high-flux solar furnace in the range 1300–1800 K yielded up to 87% petcoke conversion in a single pass of 1 s residence time. The solar-to-chemical energy conversion efficiency attained 9% without accounting for the product's sensible heat, and 20% when the sensible heat is recovered for steam generation and pre-heating. A steady-state process model that couples radiative heat transfer with the reaction kinetics is validated with experimental data and used for optimization and scale-up of the reactor design.  相似文献   

6.
A three-dimensional radiation code based on method of lines (MOL) solution of discrete ordinates method (DOM) coupled with spectral line-based weighted sum of grey gases (SLW) model and geometric optics approximation for particles is developed and its predictive ability is tested by applying it to the freeboard of a 0.3 MWt Atmospheric Bubbling Fluidized Bed Combustor (ABFBC) containing a non-grey, absorbing, emitting and isotropically scattering particle laden flue gas and comparing its predictions with measurements and former predictions obtained by the grey gas model with Mie theory for particles. The MOL of DOM with SLW and geometric optics assumption are found to provide more accurate solutions for incident radiative heat flux than grey gas model with Mie theory particularly for high particle loading. Parametric studies are also carried out to investigate the effect of size parameter and presence of particles on fluxes. MOL–SLW predictions are found to be sensitive to both the size parameter and particle load.  相似文献   

7.
In this paper, 3-D numerical analysis of the porous disc line receiver for solar parabolic trough collector is presented. The influence of thermic fluid properties, receiver design and solar radiation concentration on overall heat collection is investigated. The analysis is carried out based on renormalization-group (RNG) kε turbulent model by using Therminol-VP1 as working fluid. The thermal analysis of the receiver is carried out for various geometrical parameters such as angle (θ), orientation, height of the disc (H) and distance between the discs (w) and for different heat flux conditions. The receiver showed better heat transfer characteristics; the top porous disc configuration having w = di, H = 0.5di and θ = 30°. The heat transfer characteristic enhances about 64.3% in terms of Nusselt number with a pressure drop of 457 Pa against the tubular receiver. The use of porous medium in tubular solar receiver enhances the system performance significantly.  相似文献   

8.
Varun  R.P. Saini  S.K. Singal   《Renewable Energy》2008,33(6):1398-1405
An experimental investigation has been carried out to study the heat transfer and friction characteristics by using a combination of inclined as well as transverse ribs on the absorber plate of a solar air heater. The experimental investigation encompassed the Reynolds number (Re) ranges from 2000 to 14 000, relative roughness pitch (p/e) 3–8 and relative roughness height (e/Dh) 0.030. The effect of these parameters on the heat transfer coefficient and friction factor has been discussed in the present paper and correlations for Nusselt number and friction factor has been developed within the reasonable limits. A procedure to compute the thermal efficiency based on heat transfer processes in the system is also given and the effect of these parameters on thermal efficiency has been discussed.  相似文献   

9.
The heat transfer study of a combined wall jet and offset jet flow with different wall jet and offset jet flow velocities are considered. The flow is considered two-dimensional, steady, incompressible, turbulent at high Reynolds number with negligible body forces. The streamline curvature modification of the standard kε model is used to carry out the turbulence modeling. The Reynolds number is varied from 104 to 4 × 104 and Pr = 0.71 is taken for all computations. Constant wall temperature and constant wall heat flux boundary conditions are considered. The results are presented in the form of local Nusselt number, local heat flux, surface temperature in case of constant heat flux condition, average Nusselt number and total heat transfer.  相似文献   

10.
In this study, the flow and heat transfer characteristics of regularly arranged cylindrical particles in a bed with bed-to-particle diameter ratio of 2.65 (The particle and bed diameter are 25 and 66 mm respectively and the bed height is 200 mm) have been studied in two different arrangements of particles. The first layout is coaxial particles which embrace 8 layers and 3 equilateral cylindrical particles in each layer); the second arrangement is similar to the first one but the intermittent layers have been rotated 60o. Three dimensional CFD simulation of air flow through these arrangements of particles in bed have been carried out by the standard κ-ε turbulence model with using of FEMLAB (Multiphysics in MATLAB) software version 2.3. For two configurations, comparisons between CFD results and experimental data have been drawn. Our results have been compared with prediction of empirical correlations for pressure drop of flow through the bed. The heat transfer CFD results were validated by naphthalene sublimation mass transfer experiments. The particle Nusselt number was obtained by using analogy between mass and heat transfer. A good quantitative and qualitative agreement between hydrodynamic of CFD simulation and experimental results was gained for both arrangements. The model predicts pressure drop of channel with two arrangements, coaxial and non-coaxial particles with an average error of 10% and 15%, respectively. Moreover, the CFD simulation has predicted the average particle Nusselt numbers of these two arrangements with an average quantitative error of 7% and 14%. Furthermore, the influence of wider range of Reynolds number (2500–6800) on particle Nusselt number has been investigated.  相似文献   

11.
The addition of thermally conductive particles is an effective way to increase thermal conductivity of polymers. For highly filled composites and therefore for a high effective thermal conductivity, the heat transfer at the matrix/particle interface becomes a key point to obtain further improvement. However the interfacial thermal resistance Ri between particles and matrix is difficult to measure because of the low sensitivity of temperature to Ri and because of the small size of the particles. A setup has been developed to measure Ri between nickel wires (fiber-like particles) of a few tens micrometer diameter and a polymer matrix. The temperature measurement of the heating wire associated with a thermal model allowed to estimate values of Ri between 0.3 × 10−5 and 1.6 × 10−5 m2 K W−1 and for various wire diameters and sample temperatures. Some Ri measurements have been validated using a thermo-elastic model.  相似文献   

12.
A numerical study of two-dimensional thermo-solutal convection of water in a square cavity heated from below and salted from above for various value of Lewis number is conducted. The maximum density associated with water around 4 °C occurs inside the cavity, as the top wall is maintained at 0 °C while the bottom wall temperature varies in the range 8–12 °C. The maximum density region acts as an obstacle to prohibit convectional heat, mass, and momentum transfer. These effects are investigated numerically in the domain −5 × 102 < RaT < 2 × 104, 1 × 105 < RaS < 8 × 106 and L = 0.015 m length of square cavity where Ra is the Rayleigh number of the fluid. The effect of Lewis number on the heat, mass, and momentum transfer is also systematically studied. For certain range of parameters, it is interesting to find that the flow pattern may change inversely from rolling (fluid particles raise along both vertical side walls and fall along the vertical center line) to plume motion (fluid particles raise along the vertical center line and fall along both side walls) as the bottom wall temperature and top wall concentration increase. Further increase in the value of Rayleigh number results in oscillating two cell flow structure in the cavity. It is found that there is a temporal maximum absolute value of average Nusselt and Sherwood number followed by a temporal minimum absolute value of average Nusselt and Sherwood number in a small time interval (0 < t < 300 s) and the steady state is reached after a certain time interval at the bottom wall. These time intervals are reduced with increasing Lewis number. Also, critical Grashof number which accounts for oscillatory heat and mass transfer with Lewis number is studied and it reveals that an increase in Lewis number results in slowing down oscillation and oscillation cycle becomes shorter with increasing species Grashof number.  相似文献   

13.
G. Flamant  G. Olalde 《Solar Energy》1983,31(5):463-471
Present investigation has been concerned with high temperature gas heating through porous media (SiC and ZrO2 particles) in both a fluidized bed receiver and a packed bed receiver. As a rule, gases being transparent to solar radiation, the porous media act as (i) an absorber (ii) a gas-solid heat exchanger. The main thermal features of the systems have been measured using the 6.5 kW solar furnace of the “Laboratoire d'Energétique Solaire” in Odeillo, France. Theoretical approach, temperature profile, gas outlet temperature as a function of mean flux density, and thermal efficiency of the receiver have been reported. Great improvements of the thermal efficiency may be expected from the newly designed receivers.  相似文献   

14.
The use of concentrated solar energy as the high-temperature heat source for the thermochemical gasification of biomass is a promising prospect for producing CO2-neutral chemical fuels (syngas). The solar process saves biomass resource because partial combustion of the feedstock is avoided, it increases the energy conversion efficiency because the calorific value of the feedstock is upgraded by the solar power input, and it also reduces the need for downstream gas cleaning and separation because the gas products are not contaminated by combustion by-products. A new concept of solar spouted bed reactor with continuous biomass injection was designed in order to enhance heat transfer in the reactor, to improve the gasification rates and gas yields by providing constant stirring of the particles, and to enable continuous operation. Thermal simulations of the prototype were performed to calculate temperature distributions and validate the reactor design at 1.5 kW scale. The reliable operation of the solar reactor based on this new design was also experimentally demonstrated under real solar irradiation using a parabolic dish concentrator. Wood particles were continuously gasified at temperatures ranging from 1100 °C to 1300 °C using either CO2 or steam as oxidizing agent. Carbon conversion rates over 94% and gas productions over 70 mmol/gbiomass were achieved. The energy contained in the biomass was upgraded thanks to the solar energy input by a factor of up to 1.21.  相似文献   

15.
Energy analysis of space solar dynamic heat receivers employing solid–liquid phase change storage is developed. The heat receiver is a critical component of a solar dynamic system. Phase change thermal energy storage is used in the heat receiver. The energy analysis presented here can be used to understand the energy transfer in the heat receiver and thermal energy storage in phase change materials (PCM). The heat receiver cavity radiation mathematical model and the working fluid tube heat model are established. Energy loss, energy absorbed by gas, the latent and sensible thermal energy storage in PCM, maximum tube temperature, gas outlet temperature and liquid PCM fraction were calculated. The results are analyzed and could be used in heat receiver design.  相似文献   

16.
The aim of this work is to study heat transfer in a laboratory scale crater bed, which was set up from a cylindrical acrylic/quartz tube, using sand as the bed particle. The bed employs a downward gas jet from a nozzle which causes the particles to ascend fountain-like into the freebroad, leaving a crater on the bed surface. After reaching a certain height, these particles will descend again to the bed surface and move into the crater, where the cycle or circulation pattern starts again. The study had been separated into three parts. Firstly, the void fraction of the bed fountain zone was studied by direct measurement of the ascending sand weight within the specific volume. Secondly, the convection heat transfer coefficients between the fountain zone and the external surface of the gas inlet tube were determined by measuring the quantity of heat loss from an electrical heater that was wrapped on the outside surface at desired positions of the gas inlet tube. Thirdly, the radiation heat transfer coefficients were evaluated by heat balance of LPG combustion in the crater bed. From experimental results, the void fraction of the fountain zone could be approximated as a dilute bed (>0.98). For convective heat transfer coefficients, the value found experimentally varied from 80–260 W/m2 K depending on the experimental conditions, showing an increase when the gas velocity increases, and a decrease along the height of the gas inlet tube. Radiation heat transfer coefficients, the values of which are (within the experimental temperature range), the same order as the convective mode, increase when the bed temperature is increased and when the bed particle diameter is decreased. Empirical correlations for both bed voidage and heat transfer coefficients are proposed. The combined model, gas and particle convection and the published data on radiation heat transfer, showed good prediction when compared with experimental data.  相似文献   

17.
Droplets-laden turbulent flow downstream of a sudden pipe expansion has been investigated by using Euler/Euler two-fluid model for the gaseous and dispersed phases. Significant increase of heat transfer in separated flow at the adding of evaporating droplets has been demonstrated (more than 2 times compare with one-phase flow at the value of mass concentration of droplets ML1  0.05). Addition of dispersed phase to the turbulent gas flow results in insignificant increase of the reattachment length. Low-inertia droplets (d1  50 μm) are well entrained into the circulation flow and present over the whole pipe section. Large particles (d1 ≈ 100 μm) go through the shear layer not getting into the detached area. Comparison with experimental data on separated gas–droplets flows behind the plane backward-facing step has been carried out.  相似文献   

18.
Selection of an appropriate HTF is important for minimising the cost of the solar receiver, thermal storage and heat exchangers, and for achieving high receiver and cycle efficiencies. Current molten salt HTFs have high melting points (142–240 °C) and degrade above 600 °C. Sodium’s low melting point (97.7 °C) and high boiling point (873 °C) allow for a much larger range of operational temperatures. Most importantly, the high temperatures of sodium allow the use of advanced cycles (e.g. combined Brayton/Rankine cycles). In this study, a comparison between the thermophysical properties of two heat transfer fluids (HTFs), Hitec (a ternary molten salt 53% KNO3 + 40% NaNO2 + 7% NaNO3) and liquid sodium (Na), has been carried out to determine their suitability for use in high-temperature concentrated solar thermal central-receiver systems for power generation. To do this, a simple receiver model was developed to determine the influences of the fluids’ characteristics on receiver design and efficiency. While liquid sodium shows potential for solar thermal power systems due to its wide range of operation temperatures, it also has two other important differences – a high heat transfer coefficient (~an order of magnitude greater than Hitec) and a low heat capacity (30–50% lower than Hitec salt). These issues are studied in depth in this model. Overall, we found that liquid sodium is potentially a very attractive alternative to molten salts in next generation solar thermal power generation if its limitations can be overcome.  相似文献   

19.
In this paper, roughness was modelled as a pattern of parallelepipedic elements of height k periodically distributed on the plane walls of a microchannel of height H and of infinite span. Two different approaches were used to predict the influence of roughness on heat transfer in laminar flows through this microchannel. Three-dimensional numerical simulations were conducted in a computational domain based on the wavelength λ. A one-dimensional model (RLM model) was also developed on the basis of a discrete-element approach and the volume averaging technique. The numerical simulations and the rough-layer model agree to show that the Poiseuille number Po and the Nusselt number Nu increase with the relative roughness. The RLM model shows that the roughness effect may be interpreted by using effective roughness heights keff and keffθ for predicting Po and Nu respectively. keff and keffθ depend on two dimensionless local parameters: the porosity of the rough-layer and the roughness height normalized with the distance between the rough elements. The present results show that roughness increases the friction factor more than the heat transfer coefficient (performance evaluation criteria < 1), for a relative roughness height expected in the fabrication of microchannels (k/(H/2) < 0.46) or k/Dh < 0.11).  相似文献   

20.
A numerical model considering phase change and heat transfer was established by the Euler-Euler two-fluid method to investigate the storage characteristics and two-phase flow field of slush hydrogen. Numerous numerical simulations were performed to discuss the effect of particle diameter (dp = 0.02–0.5 mm), content of solid hydrogen (αs = 10%–50%), and heat leakage (q = 50–200W·m−2) on the flow field. It was found that particle deposition could occur during the storage process, and there exist moving vortices with contrary directions under specific conditions. The sedimentation characteristics and vortex size are influenced by many factors including particle size, solid hydrogen content, and heat leakage. An increase in particle size could lead to the strengthening of precipitation and the expansion of the counterclockwise vortex region on the right side of the tank. And the increase in solid hydrogen content could result in more deposition and more collisions and friction between particles. Moreover, the increase in heat leakage could increase the area of the counterclockwise vortex. Numerical results of the deposition and flow field characteristics in the storage tank could clearly show the physical law of the slush hydrogen so that the uniform distribution of slush hydrogen could be promoted for efficient storage and application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号