首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用碱溶酸沉法提取胡麻粕分离蛋白,通过单因素试验探讨料液比、浸提温度、浸提时间、pH值对胡麻粕蛋白提取率的影响,并通过响应面试验优化提取工艺。结果表明,胡麻粕蛋白的最佳提取工艺为:料液比1∶36(g/mL),pH10.9,浸提时间60min,浸提温度39.7℃。在最优条件下,胡麻粕蛋白的提取率为41.48%。对胡麻粕蛋白的溶解性、持水性、乳化性、起泡性及泡沫稳定性等功能特性进行研究,结果显示胡麻粕蛋白比大豆蛋白有更好的溶解性、持水性和表面活性。  相似文献   

2.
利用响应面法对反胶束提取胡麻籽蛋白前萃工艺进行优化。在单因素试验基础上选取试验因素与水平,根据Box-Behnken Design试验设计原理采用三因素三水平的响应面分析法,依据回归分析确定各工艺条件的影响因素,以胡麻籽蛋白前萃率为响应值作响应面和等高线图。在分析各个因素的显著性和交互作用后,得出胡麻籽蛋白质前萃工艺的最佳条件为原料质量浓度0.03 g/mL、pH 7.00、CTAB质量浓度0.05g/mL,胡麻籽蛋白质前萃率为56.90%。曲面回归方程与试验结果拟合性好,此模型合理可靠,可用于实际预测。  相似文献   

3.
响应面分析法在菜籽浓缩蛋白制备工艺中的应用   总被引:14,自引:0,他引:14  
通过响应面分析法对影响菜籽浓缩蛋白制备的因素进行分析,确定以含水乙醇洗涤法制备菜籽浓缩蛋白的最佳工艺参数:选用浓度为70%的乙醇作溶剂,控制液固比为6.82∶1,在60℃搅拌下,洗涤6次,洗涤时间为20 min/次.该工艺条件下制备的菜籽浓缩蛋白,其色浅味淡,无溶剂残留.蛋白质含量高达62.48%,其中硫甙能够完全脱除,单宁被脱除90%.  相似文献   

4.
响应面法优化亚麻籽油提取工艺   总被引:1,自引:0,他引:1  
为提高亚麻籽油的提取率,采用响应面法优化亚麻籽油的提取工艺条件。选取提取温度、提取时间、液固比、搅拌速率作为影响因素,以正己烷为溶剂、亚麻籽油提取率为指标,在单因素试验的基础上,通过4因素3水平Box-Behnken试验,建立亚麻籽油提取率的二次多项式回归方程,经响应面回归分析得到优化组合条件。结果表明:最佳提取工艺条件为提取温度56℃、提取时间2.2h、液固比8:1(mL/g)、搅拌速度310r/min。在此条件下亚麻籽油提取率为98.12%,与理论值98.28%接近。结论:所得提取条件可靠。  相似文献   

5.
    
ABSTRACT:  The stability of the antifungal activity of flaxseed ( Linum usitatissimum ) protein extract was evaluated in this study. Response surface methodology (RSM) using Box–Behnken factorial design was used to evaluate the effects of treatment variables, that is, temperature (50 to 90 °C), time (1 to 29 min), and pH (2 to 8), on the residual antifungal activity (RAA) against Penicillium chrysogenum , Fusarium graminearum , Aspergillus flavus , and a Penicillium sp. isolated from moldy noodles. Regression analyses suggested that the linear terms of the temperature and time had significant ( P < 0.05) negative effects on the RAA against all test fungi, whereas that of pH had a significant ( P < 0.1) positive role on the RAA of all 3 fungi. In addition, the RAA was significantly ( P < 0.05) affected by the quadratic terms of time for all fungi, and the quadratic term of temperature played a significant ( P < 0.1) role on RAA against F. graminearum. One interaction term (temperature-pH) was found to significantly ( P < 0.1) affect the RAA against both Penicillium strains tested. The results indicated that ≥ 90% antifungal activity was lost after the protein extracts were heated at 90 °C for 8 min except for F. graminearum . At pasteurization condition, ≥ 50% activity was retained except for P. chrysogenum . The results also suggested that neutral and alkaline pH favored the antifungal activity stability of the protein extracts. Thus, flaxseed protein might be promising if used as a preservative in foods with neutral or alkaline pH requiring mild heat treatments.  相似文献   

6.
Whey protein concentrate (WPC) is an important raw material for the production of instant beverages due to its protein properties. A central composite design was devised to analyse the effects of thermoplastic extrusion of 2:1 rice flour:WPC blends in physical, chemical–nutritional and functional properties. Three main factors were selected, screw speed (225–375 r.p.m.), conditioning moisture (17%–23%) and temperature (120–180 °C) to evaluate effects on water absorption (WAI) and solubility (WSI) indexes, viscoamylograph cold and final viscosities, in vitro protein and starch digestibilities and starch hydrolysis indexes (HI). A second-order model showed that linear parameters were significant for all variables studies. Conditioning moisture affected properties more significantly than temperature and screws speed. The best treatment (16% moisture conditioning, 180 °C last barrel zone and screws rotating at 350 r.p.m.) in terms of water solubility had high starch in vitro digestibility and excellent protein quality determined in vitro and in vivo with weanling rats.  相似文献   

7.
刘洁  江连洲  张景亮  李扬 《食品科学》2009,30(13):163-167
采用Protamex 蛋白酶对醇法大豆浓缩蛋白进行酶法改性,以氮溶解指数(NSI)为指标,确定酶法改性对提高蛋白溶解度的有效性。在单因素试验基础上采用四因素三水平的响应面分析方法对酶解条件进行优化。确定酶解最佳工艺条件为:pH6.6,温度54℃、底物浓度6%、酶浓度5.5%,此条件下酶解5h,NSI 可达84.45%。  相似文献   

8.
以木瓜蛋白酶有限酶解来提高花生浓缩蛋白的溶解性.花生浓缩蛋白经物理方法预处理后使用木瓜蛋白酶适度酶解改性,在单因素实验基础上,通过响应面方法对酶解工艺参数加以优化.结果表明,最佳工艺条件为:加酶量0.291 3%,酶解时间18.95 min,酶解温度46.70℃.最佳条件下酶改性花生浓缩蛋白的氮溶指数为86.32%.  相似文献   

9.
为提高亚麻胶提取速率和得率,用微波-超声波辅助提取亚麻胶,采用响应面法优化亚麻胶的提取工艺条件,并利用FTIR分析了亚麻胶的组成。以液料比、提取温度和提取时间为影响因素,亚麻胶得率为响应值,在单因素试验的基础上,通过Box-Behnken试验,建立亚麻胶得率的二次多项式回归方程,经响应面回归分析得到优化组合条件。结果表明,最佳提取工艺条件为提取温度85℃、液料比17.3∶1、总提取时间65 min。在最佳条件下,亚麻胶得率为5.14%,与理论值5.33%接近。FTIR分析表明,亚麻胶主要由多糖和蛋白质组成。  相似文献   

10.
以多酚提取量为指标,在单因素试验的基础上,通过响应面法优化了超声辅助提取胡麻粕中多酚的工艺条件。结果表明,超声辅助提取胡麻粕中多酚的最佳工艺条件为:以体积分数54%的乙醇溶液为提取剂,在料液比1∶20、超声功率240 W、提取温度57℃的条件下,提取40 min。在最佳工艺条件下,胡麻粕中多酚提取量为10.14 mg/g。  相似文献   

11.
采用超声法提取胡麻籽壳多糖。在单因素试验的基础上,采用四因素三水平响应面分析法,以多糖得率为响应值,优化提取工艺条件,并将超声提取法与热水浸提法进行比较。结果表明:超声提取胡麻籽壳多糖的最佳工艺条件为超声功率80 W、超声温度56℃、液固比49∶1、超声时间21min、提取次数2次,在此条件下胡麻籽壳多糖得率为2.70%;与热水浸提法相比,超声提取法能耗低、得率高,且提取时间短。  相似文献   

12.
乳清浓缩蛋白可食用包装膜的研制   总被引:1,自引:0,他引:1  
以乳清浓缩蛋白为基质,通过加入成膜剂、增塑剂制得可食用包装膜。研究了不同成膜剂添加量、不同增塑剂添加量、不同转谷氨酰胺酶添加量对成膜的影响。通过响应面分析表明,制备乳清浓缩蛋白可食用膜的最佳条件是:乳清浓缩蛋白浓度10%、添加山梨醇5%、无水氯化钙1.2166%、转谷氨酰胺酶0.018%,在60~65℃的温度范围成膜。  相似文献   

13.
以冷榨-浸出芝麻粕为原料,采用醇法制备芝麻浓缩蛋白.研究了乙醇体积分数、液料比、醇洗温度、醇洗时间对产品中蛋白含量的影响.在单因素试验的基础上,通过响应面分析确定最佳的醇洗条件为:乙醇体积分数64%,液料比4.8∶1,醇洗温度49℃,醇洗时间54 min.在此条件下制备的产品中蛋白含量为66.68%,与预测值的相对误差为0.34%.  相似文献   

14.
以亚麻籽为原料,采用响应面法对亚麻籽油的超声酶解提取工艺进行优化。亚麻籽经脱胶后,探究了料液比、加酶量、酶解pH、超声功率、超声时间、提取温度对亚麻籽油得率的影响,根据单因素实验设计五因素三水平响应面分析实验,确定响应面模型。根据模型回归分析得到超声酶解提取亚麻籽油的最优工艺条件为:料液比1∶10,加酶量0.10 g,酶解pH 10,超声时间40 min,提取温度50℃,在该条件下亚麻籽油实际得率达到(30.52±0.04)%。超声辅助酶法提取亚麻籽油的工艺条件简便、快速,得率高,可用于实际生产中。  相似文献   

15.
    
Y. Xu    C. Hall III    C. Wolf-Hall 《Journal of food science》2008,73(6):M250-M256
ABSTRACT:  The objective of this study was to evaluate the effect of heat treatment on the fungistatic activity of flaxseed ( Linum usitatissimum ) in potato dextrose agar (PDA) medium and a fresh noodle system. The radial growth of Penicillium chrysogenum , Aspergillus flavus , and a Penicillium sp. isolated from moldy noodles, as well as the mold count of fresh noodle enriched with heat treated flaxseed, were used to assess antifungal activity. A central composite design in the response surface methodology was used to predict the effect of heating temperature and time on antifungal activity of flaxseed flour (FF). Statistical analysis determined that the linear terms of both variables (that is, heating temperature and time) and the quadratic terms of the heating temperature had significant ( P < 0.05) effects on the radial growth of all 3 test fungi and the mold count log-cycle reduction of fresh noodle. The interactions between the temperature and time were significant for all dependent variables ( P < 0.05). Significant reductions in antifungal activities were found when FF was subjected to high temperatures, regardless of heating time. In contrast, prolonging the heating time did not substantially affect the antifungal activities of FF at low temperature. However, 60% of the antifungal activity was retained after FF was heated at 100 °C for 15 min, which suggests a potential use of FF as an antifungal additive in food products subjected to low to mild heat treatments.  相似文献   

16.
以脱壳后经超临界CO2萃取脱脂的牡丹籽粕为原料,采用碱溶酸沉法提取其中的蛋白质,在单因素试验的基础上,利用响应面法进行优化,确定提取牡丹籽蛋白的最佳工艺条件,并对提取的牡丹籽蛋白与大豆分离蛋白的一些功能性质进行比较研究。结果表明,牡丹籽蛋白的最佳提取工艺条件为:料液比1∶25,浸提p H 9.25,提取温度53.32℃,提取时间68.74 min,且影响因素主次顺序为浸提p H料液比提取时间提取温度;最佳工艺条件下的蛋白质提取率为62.95%,提取的牡丹籽蛋白中蛋白质含量为68.06%;牡丹籽蛋白的乳化稳定性和泡沫稳定性优于大豆分离蛋白,而其吸水性、吸油性、持水性、乳化性和起泡性却不如大豆分离蛋白。  相似文献   

17.
Total proteins of defatted low-mucilage flaxseed meals were isolated by extraction with aqueous sodium hexametaphosphate (SHMP). A composite central rotatable design was used to study effects of pH (X1), meal-to-solvent ratio (X2) and concentration of SHMP (X3) on nitrogen extractability (Y1) and protein recovery (Y2). Using RSM, quadratic polynomial equations were obtained for Y1 and Y2 by multiple regression analysis. All three variables significantly affected nitrogen solubility and protein extractability. The pH was the most effective factor and meal-to-solvent ratio was least. Verification experiments confirmed validity of predicted models. Stationary points for response surfaces were characterized as maxima and they were Y1=77.6% at X1= 8.90, X2= 1:33.6 and X3=2.75% and Y2=57.5% at X1=9.00, X2=1:33.3 and X3=2.85%, for nitrogen extractability and protein recovery, respectively.  相似文献   

18.
乙醇浸提法制备亚麻籽浓缩蛋白工艺研究   总被引:1,自引:0,他引:1  
以冷榨亚麻籽饼为原料,采用乙醇浸提法制备亚麻籽浓缩蛋白。采用单因素试验研究了浸提工艺参数(浸提温度、浸提时间、乙醇体积分数、液固比以及浸提次数)对产品蛋白质含量的影响。在单因素试验基础上,采用正交试验进行工艺参数优化。结果表明,在所考察的范围内,各因素影响的主次顺序为乙醇体积分数浸提时间浸提温度液固比;最优工艺条件为浸提温度50℃、浸提时间75 min、乙醇体积分数70%、液固比6∶1、浸提次数2次,在此条件下亚麻籽浓缩蛋白的回收率为63. 87%,蛋白质含量为65. 38%。  相似文献   

19.
The aim of present research was to optimise the conditions to develop nutritionally rich honey powder using honey, whey protein concentrate (WPC), aonla (Emblica officinalis. Gaertn) and basil (Ocimum sanctum) extract with the help of co‐current spray drier. Response surface methodology was applied to study the effects of inlet temperature (160–180 °C), whey protein concentrate (25–35%), feed flow rate (0.08–0.13 mL s?1), aonla extract (6–8%) and basil extract (6–8%) on product responses, viz. bulk density, hygroscopicity, antioxidant activity (AOA), total phenolic content (TPC) and vitamin C. Statistical analysis revealed that independent variables significantly affected all the responses. The results demonstrated that increasing inlet temperature lowered the bulk density, hygroscopicity, AOA, TPC and vitamin C, whereas addition of aonla extract and basil extract increased the AOA (82.73%), TPC (63.27%) and total vitamin C content (94.89%) as these functional compounds were encapsulated by WPC. Similarly, with increase in feed flow rate and WPC, there was increase and decrease in the bulk density and hygroscopicity, respectively. The recommended optimum spray‐drying conditions were inlet air temperature (170 °C), feed rate (0.11 mL s?1), whey protein concentrate (35%), aonla (8%) and basil extract (6%).  相似文献   

20.
为优化Alcalase 蛋白酶酶解花生蛋白制备功能性多肽的工艺条件,采用响应面分析法,以水解度、短肽得率为响应值,研究温度、pH 值、底物质量分数、酶底比对制备功能性多肽工艺的影响。综合考虑成本和工艺要求等问题,最终确定酶解花生蛋白制备功能性多肽的工艺条件为温度55℃、pH8.4、底物质量分数4.31%、酶底比3.39%、时间4h。该条件下水解度(DH)及三氯乙酸可溶性氮溶解指数(TCA-NSI)分别为23.40% 和74.88%,与理论值的相对误差在0.5% 以内,优化工艺稳定,DH 及TSA-NSI 较高,实验结果与模型预测值相符。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号