首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hitherto unexplored irreversible changes during initial coloration/bleaching cycles for sol–gel-derived tungsten oxide (WO3) films have been investigated using cyclic voltammetric and spectrophotometric techniques. Non-ideal features appearing in the initial five anodic (deintercalation) cycles in the voltammogram with simultaneous decreased optical transmission of the bleached films have been explained in terms of possible stoichiometric variations affecting the coloration efficiency (CE) of the films and the associated mechanisms. Electrochromic stability attained thereafter manifests in retraceable voltammograms and almost invariant value of the CE.  相似文献   

2.
New methods are shown for lower temperature preparation of amorphous tungsten oxide thin film and preparation of crystalline iridium oxide thin film by sol–gel process using metal chloride as the starting materials and ethanol as a solvent. These electrochromic materials were combined with gel solid electrolyte, and preparation of fully solid-state electrochromic display (ECD) was made. The transmittance of the ECD could be made to change by 35% by applying a voltage of 3 V for 0.2 sec.  相似文献   

3.
By virtue of gemini surfactant template, nanostructured tungsten oxides thin films were prepared from the modified tungsten hexachloride sol-gel techniques. Temperature was varied as it is an important factor for crystallization, surface morphology and microstructure of tungsten oxides, from the studies of X-ray diffractions, scanning electron microscopy and transmission electron microscopy. The mesoporous sample calcined at 300 °C has tri-dimensional vermicular mesopores with nanocrystallites embedded in the pore wall, while such uniform structure would be destroyed by higher calcination temperature of about 400 °C. X-ray photoelectron spectroscopy was used for analyzing the surface-binding states and the stoichiometry for the oxides. Electrochromic characterization was implemented by simultaneous voltametric and spectrophotometric measurements of tungsten oxides/indium tin oxide (ITO) electrodes. The investigation results showed that organized pore-wall nanostructure has strong effects on the electrochemical and chromogenic properties depending on the specific surface area and the impacts from the evolved crystallization.  相似文献   

4.
The electrochromic (EC) behavior, the microstructure, and the morphology of sol–gel deposited nickel oxide (NiOx) coatings were investigated. The films were produced by spin and dip-coating techniques on indium tin oxide (ITO)/glass and Corning glass (2947) substrates.The coating solutions were prepared by reacting nickel(II) 2-ethylhexanoate as the precursor, and isopropanol as the solvent. NiOx was heat treated at 350 °C for 1 h. The surface morphology, crystal structure, and EC characteristics of the coatings were investigated by scanning electron microscopy (SEM), electron dispersive spectroscopy (EDS), atomic force spectroscopy (AFM), X-ray diffractometry (XRD), and cyclic voltammetry (CV).SEM and AFM images revealed that the surface morphology and surface characteristics of the spin- and dip-coated films on both types of substrate were different. XRD spectra revealed that both films were amorphous, either on ITO or Corning glass substrates. CV showed a reversible electrochemical insertion or extraction of the K+ ions, cycled in 1 M KOH electrolyte, in both type of film. The crystal structure of the cycled films was found to be XRD amorphous. Spectroelectrochemistry demonstrated that dip-coated films were more stable up to 1000 coloration–bleaching cycles, whereas spin-coated films gradually degraded after 500 cycles.  相似文献   

5.
Electrochemical synthesis of tungsten oxide (WO3) thin film nanostructures by potentiostatically controlling the surface aggregates formed at the electrode–electrolyte interface, in the presence of a polymeric template (polyethylene glycol 400, PEG) from a plating sol of peroxotungstic acid (PTA) is presented. The nanoparticulate morphology of the WO3 film changes drastically upon varying PEG content in the precursor sol; from an amorphous structure with randomly distributed pores for a film derived from a PTA sol with PEG:ethanol in a 3:7 volume ratio, to a mesoporous, nanocrystalline material with hybrid structures encompassing spherical grains and nanorod-like shapes with a triclinic modification for a film formed in a sol with PEG:ethanol in a 1:1 volume ratio. This approach highlights the role of the PEG proportion in controlling crystal growth, assembly patterns and pore structure. The film derived from the sol with PEG:ethanol in a 1:1 volume ratio exhibits superior transmission modulation and coloration efficiency as compared to the film obtained from a sol with PEG:ethanol in a 3:7 volume ratio. While the latter film deteriorates rapidly within 35 color-bleach cycles, the former film sustains more than 3500 cycles, without significant degradation. This film also exhibits fast switching between the clear and blue states; these are repercussions of the mesopore structure and the interconnected nanocrystallite phase.  相似文献   

6.
In this study, one-dimensional (1D) tungsten oxide nanobundles (TNB) were synthesized via a simple solvothermal method. The phase of 1D tungsten oxide was W18O49, and the diameter and length of the building units (nanowires) were about 7 and 800 nm, respectively. TNB films were fabricated by the Langmuir–Blodgett (LB) method. The locally arranged domains of the long nanobundles form the LB films, but it is difficult for them to align perfectly owing to the inter-nanobundle interaction and dispersion problems. The electrochromic (EC) property of the TNB LB films was characterized by electrochemical potential cycling tests and in situ transmittance measurement. The deposition condition of the LB films influenced their EC property. The heat treatment and surface pressure of the TNB LB films plays an important role in the response time and transmittance of the TNBs.  相似文献   

7.
Electrochromic tungsten oxide thin films were synthesized by plasma-enhanced chemical vapor deposition (PECVD). Film density and electrochromic performance were controlled by the degree of ion bombardment. A moderate degree of ion bombardment was optimal, and the refractive index was shown to be a sensitive indicator of electrochromic performance. Chronoamperometry in concert with optical transmission was used to determine diffusion and absorption coefficients using both H+ and Li+ containing electrolytes. The absorption coefficients were similar for both ions, scaling with the degree of intercalation to 50,000 cm−1 in the opaque state. The diffusion coefficients for optimized films were found to be relatively insensitive to the degree of ion intercalation, with values of 10−9 and 10−10 cm2/s for H+ and Li+, respectively. These values are about an order of magnitude greater than values reported for vacuum-deposited films, which was attributed to low relative density in the PECVD films. The diffusion and absorption coefficients were incorporated into a model that successfully reproduced transient optical performance.  相似文献   

8.
Amorphous Ta2O5 films were prepared by sol–gel dip process on different substrates. The dip-coating technique was used to prepare amorphous Ta2O5 films by hydrolysis and condensation of tantalum ethoxide, Ta(OC2H5)5, precursor. Stable coating solutions were prepared using acetic acid as a chelating ligand and catalyzer. Single layer and multi-layered Ta2O5 films were fabricated at a dipping rate of 107 mm/min. The microstructure, stoichiometry and optical properties of these films were investigated as a function of the film thickness. Room temperature CV measurements clearly revealed a protonic conductor behavior for Ta2O5 films. Optical properties such as refractive index, extinction coefficient and optical band gap value of the Ta2O5 films were calculated from optical transmittance measurements. It was found that the refractive index and extinction coefficient values were affected by the thickness of the coatings. The refractive index at a wavelength of 550 nm increased from 1.70 to 1.72 with increasing film thickness. The optical band gap value (3.75±0.12 eV) of the coating was unaffected by the film thickness. These results indicate that sol–gel-deposited Ta2O5 films have a promising application as proton conductors in electrochromic devices.  相似文献   

9.
Thin films of titanium dioxide and titanium–vanadium oxide were obtained by a sol–gel method. The coatings are uniform, smooth with very good optical properties. The solutions of both kinds are stable for more than a year. Structure and vibrational properties were studied with the help of X-ray diffraction (XRD) analysis and infrared spectroscopy (IR). The refractive indices and film thicknesses were measured by an ellipsometer at a wavelength of 638.2 nm, as a function of annealing temperature. The optical properties were investigated by ultraviolet–visible (UV–VIS) spectroscopy.  相似文献   

10.
New mixed V/Ce films at 55, 38, and 32 at% of V were prepared via inorganic sol–gel route by dip-coating technique. The absorption edge of prepared films shifts towards higher wavelengths at higher concentration of added vanadium pentoxide. The indirect-allowed band gap (EG) also changes in dependence of added vanadium oxide from 2.8 up to 2.3 eV.  相似文献   

11.
We present a comparative study on the effect of absorbed water on the properties of tungsten oxide films prepared by two different methods (e-gun evaporation, and an aqueous sol–gel technique). Scanning electron microscopy, Fourier transform infrared spectroscopy and electrochemical techniques have been used to assess the film properties. It has been found that the preparation method of the films greatly affects their water content and thus, electron gun evaporated films have less water incorporated into their structure than their sol–gel counterparts. The former are closely packed and transparent with most of their water content adsorbed on their surface, while the latter have a porous structure, being opaque, highly hydroxylated and hydrated to a lesser extent.Both types of films exhibit reversible electrochromism, with the evaporated films being stable up to 5000 coloration-bleaching cycles and the sol–gel ones gradually degrading after 1000 cycles. Irreversible Li+ trapping related to the presence of water and hydroxyl radicals has been envisaged as the cause of the inferior cycling stability of the sol–gel films.  相似文献   

12.
Thin films of TiO2 were prepared using two different sol–gel routes. The two routes employed diethanolamine (DEA) and acetylacetone as stabilizing agents with titanium isopropoxide (Ti(OPri)4) in ethanol as the deposition solution. The densification at 500 °C achieved the nanophase TiO2 films, which were investigated by performing structural, optical and electrochemical studies. Ion storage capacity and transmission measurements showed superior response of the films derived from DEA. Between the films obtained from the two routes, the appearance of the rutile phase at lower temperature for the film synthesized using DEA was predicted on the basis of the thermal analysis of the corresponding xerogel. The nanocrystalline nature of the films was evident from the X-ray diffraction, atomic force microscopy, and scanning electron microscopy. The films deposited from both the stabilizers exhibited electrochromism in 1 M LiClO4-propylene carbonate electrolyte on cathodic polarization.  相似文献   

13.
Aluminum-doped cadmium oxide (CdO:Al) thin films are deposited on glass substrates by the sol–gel dip-coating method, taking cadmium acetate dihydrate as the precursor material. Aluminum nitrate has been taken as a source of Al-dopant. XRD pattern reveals the good crystallinity of CdO thin films. SEM micrograph showed the presence of faceted crystallites. Optical study shows 40–85% transparency with a bandgap value lying in the range 2.76–2.52 eV, depending upon the Al content in the films. Optimum percentage of Al was 5.22 for a maximum room temperature conductivity of 2.81×103 (Ω cm)−1. Hall measurement confirmed that the material is of n-type, with mobility and carrier concentrations lying in the range 413–14.7 cm2/V s, and 3.4×1019–8.11×1020 cm−3, when percentage of Al varies in the range 1.32–7.24.  相似文献   

14.
Electrical properties of ZnO:Al thin films, prepared by sol–gel dip-coating technique were studied in the range of 0.32% to 1.62% Al concentrations in the films. Room temperature electrical conductivity was found in the range of 0.08 to 1.39 S/cm for different aluminium concentrations in the films. IE characteristics of the films at a constant temperature showed non-linearity, while non-linearity becomes more and more pronounced with increase in temperature and this could be explained by Poole–Frenkel model of thermionic emission. Presence of adsorbed oxygen and excess Al atoms at grain boundaries is assumed to be the cause of this effect. These atoms produce defect levels, which trapped electrons and created a potential barrier across the grain boundaries. In the presence of an external field, the barrier height was attenuated, resulting in the thermionic emission of electrons from the trapped level to the conduction band. The trapped potentials (φt) were calculated for different doping concentrations in the films. The thermoelectric power (TEP) measurement confirmed the n-type nature of the films and the room temperature Seebeck coefficient was found to be −91.65 μV/K.  相似文献   

15.
Tungsten oxide (WO3) thin films are prepared by using a simple and inexpensive solution thermolysis technique. Thin film samples of different thickness are obtained by varying quantity of ammonium tungstate solution sprayed onto the preheated conducting glass substrate. A simple three-electrode cell has been formed to study the electrochemical and electrochromic properties. The electrochemical parameters of the cell such as anodic peak current, anodic peak potential, threshold voltage, amount of H+ ions intercalated into and deintercalated out of the WO3 samples are calculated. The effect of film thickness on these parameters are studied. The extent of electrochromism and reversibility of the colouration/bleaching processes of various WO3 samples are described. The colouration efficiencies at 633 nm are calculated. The maximum colouration efficiency obtained for thicker film, is 56 cm2/C. The samples were found to be stable in 0.05N H2SO4 electrolyte up to 1×103 colour/bleach cycles.  相似文献   

16.
This study presents results on technology and characterization of molybdenum oxide, tungsten oxide and mixed oxide films based on Mo and W. These films were deposited by low-temperature carbonyl CVD process at atmospheric pressure and by simplified sol–gel method using spinning and spraying approaches. The obtained films were structurally and optically investigated. The films show good optical quality with optical transmittance of about 70% in the visible spectral range. Cyclic voltammograms as well as the transmittance modulation at different wavelengths in the visible spectral range were measured to characterize the electrochromic behaviour of the films. The colour efficiencies of the optimized films are in the order of 110–115 cm2/C, in case of spray deposited WO3-sol–gel films—130 cm2/C.  相似文献   

17.
Homogenous, crack free iron oxide films are prepared by the sol–gel spin coating technique from a solution of iron iso-propoxide and isopropanol. The films were characterized by X-ray diffractometry (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), UV-visible (UV–Vis) spectroscopy and cyclic voltammetry (CV). XRD of the films showed that they had an amorphous structure. The optical constants refractive index (n) and extinction coefficient (k) were measured by scanning spectrometer in the wavelength range of 390–990 nm. The n and k values were found n =2.3±0.01 and k =0.2±0.002 at 650 nm. The electrochemical behavior investigated in 0.5 M LiClO4 propylene carbonate (PC) electrolyte-CV examinations showed good rechargeability of the Li+/e insertion extraction process beyond 300 cycles. Spectroelectrochemistry showed that these films exhibit weak cathodic coloration in the spectral range of 350–800 nm.  相似文献   

18.
A detailed systematic study of the tungsten oxide thin films has been carried out using WO3 films after they were annealed at progressively increasing temperatures ranging from 350°C to 450°C in oxygen environments. The structural properties of the films were characterized using X-ray diffraction and Raman spectroscopy. The amorphous WO3 films remain as an amorphous phase up to 385°C and begin to crystallize at 390°C and then are completely crystallized at 450°C. Absorption peaks of the films are found to shift to a higher energy side with increasing annealing temperature up to 385°C and then shift abruptly to a lower energy as the films begin to crystallize at 390°C. Deconvolution of the absorption spectra shows that there are two different polaron transitions in the amorphous WO3 films.  相似文献   

19.
Electrochromic (EC) “smart” windows for buildings represent an effective way to modulate the intensity of incoming solar radiation. While it is accepted that WO3 films represent the best option for the working electrode, the choice of the best counter-electrode is still debatable. Optical properties of counter-electrodes such as Ce, Fe, V and Sn oxides are presented. Electrochromic windows were made with a sol–gel WO3 active colouring film (150°C), Ce, Fe, V oxide counter-electrodes and a sol–gel organic–inorganic hybrid (Li+ormolyte) ion conductor. The electrochromic responses of these devices predicted from the charge capacities, photopic transmittances and coloration efficiencies of individual films are compared with measured values.  相似文献   

20.
Silicon–cobalt oxide thin films were prepared by the dipping sol–gel process. Samples with different number of dipping–annealing cycles were prepared. Some data regarding the precursor sol are given from small angle X-ray scattering characterization. Composition, structure, surface morphology and optical properties are obtained from X-ray diffraction, reflectance, transmittance, FTIR, scanning electron microscopy and EDX spectroscopy measurements. The silicon–cobalt oxide thin films prepared in this work are mostly amorphous. They have a high absorption coefficient in the visible and infrared regions. A refractive index from 2.15 to 1.79 (at 1200 nm wavelength), and a band gap between 3.73 and 3.68 eV with increasing film thickness were measured in the films. Sol–gel prepared Si–Co oxide thin films could be well suited for use in photothermal solar collectors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号