共查询到20条相似文献,搜索用时 15 毫秒
1.
针对刀具故障诊断信号信噪比低、诊断结果不准确等问题,采用局域均值分解(LMD)结合排列熵(PE)来处理采集到的刀具加工时的振动信号,然后将提取到的特征向量输入到训练好的长短期记忆神经网络(LSTM)中得到诊断结果,为了提高LSTM的诊断效率,结合卷积神经网络(CNN)对LSTM进行了改造;试验表明,文章提出的方法诊断准确率比BP神经网络提高了将近12%,改进LSTM网络比传统LSTM的诊断时间缩短了50%。 相似文献
2.
3.
4.
基于BP神经网络的故障诊断技术研究 总被引:4,自引:0,他引:4
分析了传统的故障诊断方法的特点和缺点,在此基础上选择BP神经网络应用于故障诊断,详细探讨了BP神经网络的建模方法,根据设备的层次结构和特点,将集成神经网络应用于故障诊断,有效地克服了单一神经网络故障诊断的一些缺点,大大提高了故障诊断的效率和准确率. 相似文献
5.
6.
针对变幅液压系统复杂性、不确定性、模糊性的特点,提出基于故障树的模糊神经网络作为变幅液压系统故障诊断的方法。该方法利用故障树知识提取变幅液压系统故障诊断的输入变量和输出变量,引入模糊逻辑的概念,采用模糊隶属函数来描述这些故障的程度,利用Levenberg-Marquardt优化算法对神经网络进行训练,系统推理速度快,容错能力强,并通过实例分析验证了变幅液压系统模糊神经网络故障诊断的有效性。 相似文献
7.
多频测试使模拟电路响应的故障状态和正常状态差异最大化,而神经网络具有解决复杂分类问题的能力。结合两者优点,提出一种基于多频测试和神经网络的故障诊断方法:通过灵敏度分析指导多频测试矢量生成,选择最优测试激励;提取各测试节点响应的故障信息,利用神经网络对各种状态下的特征向量进行分类决策,实现对故障元件的检测和定位。实验结果表明,该方法对模拟电路故障诊断非常有效,具有很强的实用性。 相似文献
8.
阐述了人工神经网络模型的一般结构和算法,并设计了机械故障诊断神经网络的模型和学习过程。通过对集材-50拖拉机变速箱的实验诊断和测试,结果表明人工神经网络技术可以快速、准确地诊断出机械故障类型。 相似文献
9.
对于远程自主式水下航行器,控制系统中传感器的实时故障诊断和容错控制是一项关键技术;采用BP神经网络设计了一种由主网络和局部网络构成的两级神经网络故障诊断算法,其中主网络用于水下航行器控制系统中传感器的故障检测,一旦发现有故障发生,则通过局部网络完成对故障的识别,因此可以减少运算量,提高故障诊断的实时性;通过仿真研究验证了该方法的有效性,为水下航行器控制系统的故障诊断及容错研究提出了一条新的途径。 相似文献
10.
针对滚动轴承工作环境多变和样本不足导致故障诊断效果不佳的问题,提出一种多模态注意力卷积神经网络。该网络采用多个并行卷积层构建,并结合注意力机制,有效地提取了丰富的故障特征。然后提出了两种有限数据条件下的数据增强方法,解决了数据样本不足的问题。另外,将采集到的滚动轴承时域信号通过小波变换转换为时频图谱作为网络输入来提高数据质量,利用多种转频下故障数据对所提方法进行实验分析。结果表明,该方法在变工况实验中准确率高,聚类效果明显,说明该方法能有效提高变工况下轴承故障诊断的精度,具有很好的应用价值。 相似文献
11.
基于粗糙集-神经网络集成的故障诊断 总被引:1,自引:0,他引:1
综合粗糙集和神经网络的优点,提出一种基于粗糙集-神经网络集成的智能故障诊断模型.在数据采集和预处理的基础上,利用粗糙集(RS)理论对原始故障诊断样本进行离散化处理,并根据条件属性(集)对决策属性的正域的大小来选择属性,提取出对诊断故障贡献最大的最小故障特征子集,从而确定神经网络的拓扑结构;通过网络训练建立故障特征与故障之间的映射关系,采用神经网络集成的方法实现故障的诊断.通过热电厂发电机组的故障诊断实例,表明了这种故障诊断方法的工程有效性. 相似文献
12.
As an essential part of hydraulic transmission systems, hydraulic piston pumps have a significant role in many state-of-the-art industries. Thus, it is important to implement accurate and effective fault diagnosis of hydraulic piston pumps. Owing to the heavy reliance of shallow machine learning models on the expertise and experience of engineers, fault diagnosis based on deep models has attracted significant attention from academia and industry. To construct a deep model with good performance, it is necessary and challenging to tune the hyperparameters (HPs). Since many existing methods focus on manual tuning and use common search algorithms, it is meaningful to explore more intelligent algorithms that can automatically optimize the HPs. In this paper, Bayesian optimization (BO) is employed for adaptive HP learning, and an improved convolutional neural network (CNN) is established for fault feature extraction and classification in a hydraulic piston pump. First, acoustic signals are transformed into time–frequency distributions by a continuous wavelet transform. Second, a preliminary CNN model is built by setting initial HPs. The range of each HP to be optimized is identified. Third, BO is employed to select the optimal combination of HPs. An improved model called CNN-BO is constructed. Finally, the diagnostic efficiency of CNN-BO is analyzed using a confusion matrix and t-distributed stochastic neighbor embedding. The classification performance of different models is compared. It is found that CNN-BO has a higher accuracy and better robustness in fault diagnosis for a hydraulic piston pump. This research will provide a basis for ensuring the reliability and safety of the hydraulic pump. 相似文献
13.
模拟电路故障诊断的神经网络方法综述 总被引:5,自引:4,他引:5
以近年来国内外有关的文献报道为依据,对目前已经提出的各种基于神经网络的模拟电路故障诊断方法进行系统的归纳和分类,重点讨论了神经网络故障字典法和神经网络优化诊断法;指出模拟电路故障诊断的神经网络诊断法不能完全取代传统的诊断方法,并预测这类方法的发展趋势是应用小波变换、模糊控制和遗传算法等技术,克服神经网络本身的局限性,并解决神经网络结构的确定、数据预处理和训练样本集的优选等问题. 相似文献
14.
非线性电路的神经网络故障诊断方法 总被引:1,自引:0,他引:1
针对非线性动态电子电路;提出一种基于神经网络的故障诊断方法。通过故障字典的建立;对电路故障响应进行预处理后得到的故障特征作为神经网络的输入;然后利用神经网络对各种状态下的特征向量进行分类决策;对故障类别进行辨识;并对电路进行了可测性分析;从而实现非线性电路的故障诊断。详细的仿真过程及结果表明; 该方法有效地解决了非线性电路辨识难的问题;能较好地对故障模式进行分类;取得了满意的诊断效果。 相似文献
15.
基于小波神经网络的齿轮箱故障诊断研究 总被引:4,自引:0,他引:4
论述了小波神经网络的系统结构及算法,并根据齿轮振动信号的频域变化特征,提取特征向量作为输入,利用小波神经网络建立特征向量与故障模式之间的映射关系,建立了基于该算法的齿轮故障诊断模型。仿真结果表明:与传统的BP神经网络相比,该模型显著缩短了训练时间。该小波神经网络进行机械故障诊断是有效的。 相似文献
16.
鉴于概率神经网络良好的分类性能,提出一种基于PNN的飞机发动机故障诊断方法,成功对三种典型飞机发动机转子故障做出了正确诊断。研究表明,PNN网络诊断准确,对测量噪声有良好的鲁棒性,具有较好的工程应用前景。 相似文献
17.
针对装甲车辆灭火系统电路板规模较大,功能日趋多样与完善的同时,其复杂程度也日益提高,故障层次越来越多,故障现象与故障原因的映射关系更加复杂,组合故障频发,传统的故障诊断方法已不能满足灭火系统电路板故障诊断的要求。设计了基于免疫遗传算法优化的BP神经网络对灭火系统电路板进行故障诊断,并在免疫和遗传过程中保留了部分训练最优解。实现了神经网络收敛速度的提高,使用Matlab编程优化算法并完成了电路板仿真故障的诊断。通过实验验证了该诊断模型的准确性和可靠性,为电气系统通用检测设备的神经网络诊断方法实现提供了理论支撑。 相似文献
18.
针对概率神经网络(PNN)模型强大的非线性分类能力,PNN能够很好地对变压器故障进行分类;文章通过对PNN神经网络的结构和原理的分析,应用PNN概率神经网络方法对变压器故障进行诊断;通过实例仿真表明,PNN网络的训练时间比BP网络少,比之预测准确度也要高,而且还具有高度的泛化能力,这使得PNN网络可以有效地运用到变压器故障诊断中,具有一定的可操作性。 相似文献
19.
结合小波变换和神经网络的优势给出小波神经网络的结构模型,研究了小波神经网络的学习算法;针对传统算法收敛速度慢等问题,从学习率和引入动量项两个方面对算法进行改进。应用小波网络对滚动轴承的典型故障进行实例诊断。以7216圆锥轴承在实验台上所测取的数据进行网络训练。用振动信号为网络输入向量,给出训练结果。仿真实例表明,采用小波神经网络能够很好地对故障进行分类,其收敛速度明显要快于相同条件BP神经网络,有效地实现了滚动轴承的故障诊断。 相似文献