首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Severe deformations and vibration usually occur when grinding the weak-stiffness workpieces, then fluctuate the grinding force and damage the surface. In this paper, the time-varying isobaric surface (TVIS) is defined as a virtual surface to generate constant force during robotic grinding. Based on it, a novel robotic grinding method, including contact trial and surface reconstruction, is proposed. In the contact trial process, the robot actively samples the deformation and stiffness of contact point with a force sensor. Then, a TVIS mesh is constructed to replace the original geometry of the workpiece, which is utilized for grinding path planning. Experiments have been conducted to verify the feasibility of this method. The result shows that the proposed method can achieve constant grinding force and is robust to the types of workpieces and the processing techniques. Furthermore, it is considered as an intelligent method for customized robotic machining of the weak-stiffness workpieces.  相似文献   

2.
Automatic robotic grinding and polishing systems have become a developing trend in aerospace parts manufacturing. In a robotic blade grinding and polishing system (RBGPS), the automatic and precise calibration of the dynamic workpiece coordinate frame is the most important process. In this research, a new method that introduces the concept of six-point positioning into the dynamic workpiece coordinate frame calibration process is proposed using a point laser displacement sensor (PLDS). The static coordinate frame calibration process is conducted based on a robot flange and force sensor. The results indicate that the new method can achieve a higher precision calibration result and has improved operational efficiency and cost. Finally, its practicality is verified in the BRGPS, and the results indicate that the polished blade surface after using the new method has good consistency.  相似文献   

3.
Robotic belt grinding operations are performed by mounting a workpiece to the end effector and commanding it to move along a trajectory while maintaining contact with the belt grinding wheel. A constant contact force throughout the grinding process is necessary to provide a smooth finish on the workpiece, but it is difficult to maintain this force due to a multitude of installation, manipulation, and calibration errors. The following describes a novel methodology for robotic belt grinding, which primarily focuses on system calibration and force control to improve grinding performance. The overall theory is described and experimental results of turbine blade grinding for each step of the methodology are shown.  相似文献   

4.
Robotic abrasive belt grinding has been successfully applied to the grinding and polishing of aerospace parts. However, due to the flexible characteristics of robotic abrasive belt grinding and the time-varying characteristics of the polishing contact force, as well as the plastic and difficult-to-machine material properties of Inconel 718 alloy, it is very difficult to control the actual removal depth and force of the polished surface, which brings great challenges to robot automatic polishing. Therefore, the relationship between the grinding force and the grinding depth in the robotic abrasive belt grinding is analyzed in detail, the robot machining pose error model considering the deformation of the grinding head is established, and the Inconel 718 alloy machining experiment of the robotic abrasive belt grinding is designed. The mapping relationship between the grinding force and the grinding depth is obtained, and the grinding force ratio in the downgrinding and upgrinding mode is discussed. The experimental and theoretical comparisons results show that with the increase of the grinding depress depth, both the grinding depth and the grinding force show an irregular increasing trend, and the increasing trend of the grinding force (increases by about 344.44%–445.45%) is obviously greater than that of the grinding depth (increases by about 52.94%). When the grinding depress depth is large (greater than 3 mm), the feed direction force and the normal force appear obvious secondary pressure peaks at the beginning and end of grinding, which has not been seen in previous studies. In addition, regardless of whether it is downgrinding or upgrinding, the grinding force ratio decreases with the increase of the depress depth, and the grinding force ratio of downgrinding (average 0.668) is smaller than that of upgrinding (average 0.724). This study provides a reference for robotic abrasive belt grinding, and the surface quality of Inconel 718 alloy of robotic abrasive belt grinding can be further improved through the optimization of force and depth.  相似文献   

5.
Robotic grinding is considered as an alternative towards the efficient and intelligent machining of complex components by virtue of its flexibility, intelligence and cost efficiency, particularly in comparison with the current mainstream manufacturing modes. The advances in robotic grinding during the past one to two decades present two extremes: one aims to solve the problem of precision machining of small-scale complex surfaces, the other emphasizes on the efficient machining of large-scale complex structures. To achieve efficient and intelligent grinding of these two different types of complex components, researchers have attempted to conquer key technologies and develop relevant machining system. The aim of this paper is to present a systematic, critical, and comprehensively review of all aspects of robotic grinding of complex components, especially focusing on three research objectives.For the first research objective, the problems and challenges arising out of robotic grinding of complex components are identified from three aspects of accuracy control, compliance control and cooperative control, and their impact on the machined workpiece geometrical accuracy, surface integrity and machining efficiency are also identified. For the second aim of this review, the relevant research work in the field of robotic grinding till the date are organized, and the various strategies and alternative solutions to overcome the challenges are provided. The research perspectives are concentrated primarily on the high-precision online measurement, grinding allowance control, constant contact force control, and surface integrity from robotic grinding, thereby potentially constructing the integration of “measurement – manipulation – machining” for the robotic grinding system. For the third objective, typical applications of this research work to implement successful robotic grinding of turbine blades and large-scale complex structures are discussed. Some research interests for future work to promote robotic grinding of complex components towards more intelligent and efficient in practical applications are also suggested.  相似文献   

6.
A method for grinding removal control of a robot belt grinding system   总被引:4,自引:0,他引:4  
As a kind of manufacturing system with a flexible grinder, the material removal of a robot belt grinding system is related to a variety of factors, such as workpiece shape, contact force, robot velocity, and belt wear. Some factors of the grinding process are time-variant. Therefore, it is a challenge to control grinding removal precisely for free-formed surfaces. To develop a high-quality robot grinding system, an off-line planning method for the control parameters of the grinding robot based on an adaptive modeling method is proposed in this paper. First, we built an adaptive model based on statistic machine learning. By transferring the old samples into the new samples space formed by the in-situ measurement data, the adaptive model can track the dynamic working conditions more rapidly. Based on the adaptive model the robot control parameters are calculated using the cooperative particle swarm optimization in this paper. The optimization method aims to smoothen the trajectories of the control parameters of the robot and shorten the response time in the transition process. The results of the blade grinding experiments demonstrate that this approach can control the material removal of the grinding system effectively.  相似文献   

7.
Impedance control is to provide stable tracking by regulating the impedance response of a robot. In this paper, an asymmetrical nonlinear impedance control (ANIC) is proposed for a dual robotic machining system. The symmetrical linear impedance control (SLIC) is also analyzed as a comparison study. We compared two controllers in terms of the stability and the sensitivity property of the grinding force, as well as the trajectory design. The main advantage of the ANIC is that the grinding force is robust to the environmental disturbances and the variation in thickness of workpieces. In contrast to the traditional control concept, which is devoted to compensate the nonlinear effect of the original system, our design philosophy is to increase the system robustness by introducing an artificial nonlinearity to the system. As a result, the dual robotic system acts as variable stiffness actors to adapt the variation in the thickness of workpieces. Grinding experiments are conducted in the dual robotic machining test rig for both workpieces with the uniform and varied thickness. The experimental results show that the dual robotic system with the ANIC can achieve better grinding quality.  相似文献   

8.
Vibration suppression is a major difficulty in the grinding of low-stiffness large thin-wall shells. The paper proposes that effective workpiece vibration control can be performed by a novel force-controlled end-effector integrated into a robotic grinding workcell. First, a dynamics model is built to capture the characteristics and vibration suppression mechanism of force control-based robotic grinding, then a novel force control-based vibration suppression method is designed for grinding large thin-wall shells, and three robotic grinding tests are conducted to validate the effects of the new method and the grinding performance of the force control-based robotic grinding workcell. The results are: 75% reduction in the amplitude of workpiece vibration; effective suppression of non-tool passing frequency; stable grinding of large thin-wall shells remarkably enhancing grinding depth up to 0.3 mm per pass, grinding depth error less than ±0.1 mm, and significant improvement of the workpiece surface quality up to Ra=0.762 μm.  相似文献   

9.
Robotic belt grinding of the leading and trailing edges of complex blades is considered to be a challenging task, since the microscopic material removal mechanism is complicated due to the flexible contact state accompanied with greatly varying curvature that finally affects the machined profile accuracy. The resulting poor accuracy of blade edges, to a great extent, is attributed to the trajectory planning method which less considers the dynamics. In this paper, an iso-scallop height algorithm based on the material removal profile (MRP) model is developed to plan the tool paths by taking into consideration the elastic deformation at contact wheel-workpiece interface. An improved constant chord-height error method considering the influence of elastic deformation is then proposed to adaptively plan the grinding points according to the curvature change characteristics of the free-form surface. Based on these two steps, a MRP model based adaptive trajectory planning algorithm is constructed to enhance the profile accuracy facing the robotic belt grinding operation. Simulation and experimental results demonstrate the effectiveness of the proposed trajectory planning algorithm for the robotic belt grinding of blades from the perspectives of surface roughness, profile accuracy and processing efficiency. Particularly this technology serves to solve the problem of over-cutting at the blade leading and trailing edges.  相似文献   

10.
As a key technology of robot grinding, force control has great influence on grinding effects. Based on the traditional impedance control, a position-based force tracking adaptive impedance control strategy is proposed to improve the grinding quality of aeroengine complex curved parts, which considers the stiffness damping environmental interaction model, modifies the reference trajectory by a Lyapunov-based approach to realize the adaptive grinding process. In addition, forgotten Kalman filter based on six-dimensional force sensor is used to denoise the force information and a three-step gravity compensation process including static base value calculation, dynamic zero update and contact force real-time calculation is proposed to obtain the accurate contact force between tool and workpiece in this method. Then, to verify the effectiveness of the proposed method, a simulation experiment which including five different working conditions is conducted in MATLAB, and the experiment studying the deviation between the reference trajectory and the actual position is carried out on the robot grinding system. The results indicate that the position-based force tracking adaptive impedance control strategy can quickly respond to the changes of environmental position, reduce the fluctuation range of contact force in time by modifying the reference trajectory, compensate for the defect of the steady-state error of the traditional impedance control strategy and improve the surface consistency of machined parts.  相似文献   

11.
徐燕  李迺璐  陈浩  葛强  徐庆 《测控技术》2017,36(1):51-54
针对风力机叶片的颤振会严重影响风力机的发电效率和运行安全问题,设计了一种基于极点配置的振动控制器在抑制叶片颤振的同时可以取得良好的闭环控制特性,并且能够有效抑制来自阵风的干扰.重点研究了利用Diophantine方程求解极点配置(PPC) PID控制器的方法,并选取有效的系统输出信号来设计反馈控制器,达到抑制叶片颤振的目的.Matlab/Simulink仿真结果表明,在叶片颤振控制系统中极点配置PPC-PID控制器比传统PID控制器具有更好的抗干扰性和动态特性.  相似文献   

12.
周平  柴天佑 《控制理论与应用》2014,31(10):1352-1359
冶金磨矿是典型的高能耗、低效率过程,其控制与优化不仅仅是使常规过程控制系统尽可能好地跟踪期望设定值,而且要控制整个过程运行,实现表征磨矿整体运行性能的磨矿粒度与生产效率等运行指标的优化.针对我国广泛使用的赤铁矿两阶段全闭路磨矿,由于其原矿石性质与成份复杂且不稳定、粒级波动大,磨矿运行指标不能在线测量,工况时变,难以建立过程数学模型,提出基于数据与知识的智能运行反馈控制方法,包括基于案例推理的控制回路预设定、磨矿粒度动态神经网络软测量以及多变量模糊动态调节器.为了验证所提方法的有效性,将所题方法应用于中国某大型赤铁矿选厂,取得显著应用成效.  相似文献   

13.
Lower path accuracy is an obstacle to the application of industrial robots in intelligent and precision grinding complex surfaces. This paper proposes a novel path accuracy enhancement strategy and different evaluation methods for a six-degree-of-freedom industrial robot FANUC M710ic/50 used for grinding an aero-engine blade. Six groups of theoretical tool paths individually planned on this complex surface were obtained using the iso-parametric method and the constant chord height method. Then the actual paths of the robot were dynamically recorded by a laser tracker with a high frequency. A revised Levenberg-Marquardt and Differential Evolution hybrid algorithm was proposed to improve the absolute robotic positioning accuracy by considering the average curvature variation rate, the arc length and the number of cutter contact points on planning paths. The results showed that the maximum positioning error had been drastically reduced from 0.792 mm to 0.027 mm. Based on the redefinition of robotic path accuracy, including position accuracy and shape accuracy in this work, the methods MP-TLD, BP-TPD and MP-TID were proposed to evaluate the enhanced path accuracy. The evaluation results showed that the different path planning methods have almost little effect on path accuracy. Furthermore, the maximum path deviation evaluated by the MP-TLD method was reduced from 0.378 mm to 0.044 mm, evaluated by the BP-TPD method was reduced from 0.374 mm to 0.029 mm, and evaluated by the MP-TID method was reduced from 0.205 mm to 0.026 mm. It is concluded that these evaluation methods are basically valid and the average path accuracy value is about 0.035 mm, for present complex surface grinding with this typical industrial robot. Finally, the robotic grinding experiments of titanium alloy blades are conducted to further validate the effectiveness of the proposed method.  相似文献   

14.
双足机器人的双脚支撑期是实现其步行运动的重要过程,然而耦合的位置/力控制难以保证其稳定平滑运动.本文提出了一种基于降阶位置/力模型的机器人控制策略,整合了位置控制子空间模型和力控制子空间模型,通过模型降阶减小了控制器设计的复杂度,并采用神经网络自适应控制方法综合多控制目标,实现了双足机器人的平滑稳定控制并有效地抑制了系统外扰和参数不确定性的影响.最后,仿真算法验证了该控制方法和模型的有效性.  相似文献   

15.
In this article, we develop a hybrid robot manipulator for propeller grinding and derive its kinematic and dynamic models. The manipulator is constructed by combining a parallel mechanism and a serial one to increase high stiffness as well as workspace. Based on geometric constraints, inverse–direct kinematics and Jacobian are derived to be implemented in real time control. The velocity control is used to measure the surface of a propeller blade and the position control is conducted to grind the removal depth. The dynamic model, which is developed by a motor algebra, can compute the forces and moments acting at a passive joint and an active one. ©1999 John Wiley & Sons, Inc.  相似文献   

16.
Passive compliant joints with springs and dampers ensure a smooth contact with the surroundings, especially if robots are in contact with humans, but the passive compliant joints cannot determine precisely the position of the members of the joint or direction of the collision force. In this paper was proposed the structure of a passive compliant robotic joint with conductive silicone rubber elements as internal embedded sensors. The sensors can operate as absorbers of excessive external collision force instead of springs and dampers and can be used for some measurements. Therefore, this joint presents one type of safe robotic mechanisms with an internally measuring system. The sensors were made by press-curing from carbon-black filled silicone rubber which is an electro active material. Various compression tests of the sensors were done. The main task of this study is to investigate the application of a control algorithm for detecting the direction of the robotic joint angular rotation when subjected to an external collision force. Soft computing methodology, adaptive neuro fuzzy inference strategy (ANFIS), was used for the controller development. The simulation results presented in this paper show the effectiveness of the developed method.  相似文献   

17.
为了提高现代航空发动机的性能,涡轮叶尖间隙的主动控制已成为国内外的一个研究热点.在对影响涡轮叶尖间隙变化因素的初步分析基础上,针对飞行器稳态飞行条件下涡轮转子系统的不平衡力产生的振动对叶尖间隙的影响,提出了一种新的抑制涡轮转子振动的方法——电磁平衡头在线动平衡方法,并通过建模仿真分析,论证了这种方法的有效性.  相似文献   

18.
针对航空发动机叶片打磨加工前,叶身余量分布不均且较小的问题,提出一种基于毛坯点云配准的加工余量分析和自适应打磨轨迹生成方法。利用精确扫描测绘技术获取毛坯三维点云,形成了毛坯/零件数模二者点云配准方法;通过基准对齐、点云轮廓包含等条件约束,实现了毛坯三维加工余量分析;在余量分布点云基础上,通过截面获取加工点云轨迹,对轨迹点云进行珠链排序,将轨迹排序点有效化,计算出连续合适的打磨路径,实现自适应余量打磨。最后在Vericut软件中进行了打磨仿真,验证了提出方法的有效性。  相似文献   

19.
尾缘襟翼风力机控制技术在大型风力机领域具有巨大的应用潜力.本文首先基于修正的叶素动量方法建立了具有可变尾缘襟翼的风力机气动模型.针对襟翼风力机的非线性模型,采用反步法设计了非线性控制器,保证系统的控制量和状态变量全局有界,并且风机的输出功率可以收敛到额定功率的一个小邻域内.此外,控制器设计过程中没有将实时风速信息纳入反馈系统,因而降低了工程实施的难度.最后针对12 m/s~15 m/s的阶跃风、基于四分量模型模拟的风载扰动、执行机构受到外部扰动以及总转动惯量具有10%不确定性的工况进行了仿真,仿真结果表明所设计的控制器能有效地稳定风力发电系统的输出功率,控制系统具有较强的鲁棒性.  相似文献   

20.
Contact force is dominant in robotic polishing since it directly determines the material removal. However, due to the position and stiffness disturbance of mobile robotic polishing and the nonlinear contact process between the robot and workpiece, how to realize precise and smooth contact force control of the hybrid mobile polishing robot remains challenging. To solve this problem, the force tracking error is investigated, which indicates that the force overshoot mainly comes from the input step signal and the environmental disturbance causes force tracking error in stable state. Accordingly, an integrated contact force control method is proposed, which combines feedforward of the desired force and adaptive variable impedance control. The nonlinear tracking differentiator is used to smooth the input step signal of the desired force for force overshoot reduction. Through modeling of the force tracking error, the adaptive law of the damping parameter is established to compensate disturbance. After theoretical analysis and simulation verification, the polishing experiment is carried out. The improvement in force control accuracy and roughness of the polished surface proves the effectiveness of the proposed method. Sequentially, the proposed method is employed in the polishing of a 76-meter wind turbine blade. The measurement result indicates that the surface roughness after mobile robotic polishing is better than Ra1.6. The study provides a feasible approach to improve the polishing performance of the hybrid mobile polishing robot.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号