首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于灰度共生矩阵和聚类方法的木材缺陷识别   总被引:1,自引:0,他引:1  
文章提出了一种新的基于灰度共生矩阵的木材纹理特征提取和聚类分析的木材缺陷识别方法。该方法基于灰度共生矩阵,提取5个具有代表性的纹理特征:能量(E),惯性矩(I),均值和(SOA),聚类阴影(SOC),方差和(SOV),实现数据降维,对产生的特征数据集分别利用k-means算法及AP算法进行聚类,自动找出并正确标识木材表面缺陷位置,并对比分析不同木材表面缺陷类型识别效率。实验结果表明,该方法能快速有效地进行木材表面缺陷自动识别。  相似文献   

2.
对于手写字符识别过程中相似字符较多且相同字符存在大量不规则书写变形的问题,提出一种改进的仿射传播聚类算法加入手写字符识别过程中。该算法基于原始仿射传播(AP)聚类算法,将其与聚类评判函数Silhouette结合,通过AP算法迭代过程自适应地改变偏向参数以调整类别数,并且结合每次聚类质量得到最优聚类结果。基于手写汉字识别的实验结果表明,加入了原始AP算法的识别率比传统识别过程得到的识别率总体提高1.52%,而加入改进AP算法的识别率又比加入原始AP算法的识别率总体提高了1.28%。该实验结果验证了加入聚类算法于手写字符识别过程的有效性,而改进AP算法相比原始AP算法在收敛性和聚类质量上都有一定的提高。  相似文献   

3.
基于模糊连接度的近邻传播聚类图像分割方法   总被引:1,自引:0,他引:1  
杜艳新  葛洪伟  肖志勇 《计算机应用》2014,34(11):3309-3313
针对现有近邻传播聚类图像分割方法分割精度低的问题,提出一种基于模糊连接度的邻近传播聚类(FCAP)图像分割算法。针对传统模糊连接度算法不能得出任意点对间模糊连接度的不足,结合最大生成树提出了全模糊连接度算法。FCAP算法先使用Normalized Cut超像素技术进行超像素分割,这些超像素可以看作数据点以及它们之间的模糊连接度;然后使用所提出的全模糊连接度算法计算超像素间的模糊连接度,根据模糊连接度和空间信息计算超像素的相似度;最后使用近邻传播(AP)聚类算法完成分割。实验结果表明,FCAP算法明显优于超像素处理后直接使用AP聚类算法进行分割的方法,并且优于无监督图像分割方法。  相似文献   

4.
针对肾癌三维CT图像存在病变区域多尺度、边缘像素稀疏、对比度低以及肿瘤形状复杂且不规则等问题,提出一种基于边缘增强的选择性特征融合肾癌三维CT图像分割网络(EE-SFF U-Net)。EE-SFF U-Net采用基于U-Net的对称编解码网络架构,编码路径中包含一个用于强化边缘信息的边缘增强模块,可有效挖掘、利用浅层特征信息以缓解边缘像素稀疏问题,同时避免小目标的漏检。此外,在网络的跳跃连接中,设计一个选择性特征融合模块,使得深浅层特征相互补充,实现不同信息的有效聚合。最后提出一个综合Generalized Dice Loss和Focal Loss的混合损失函数,利用动态权重调整策略,实现损失函数的优化训练,并降低病变区域多尺度和肿瘤形状大小不规则带来的影响。所提方法在保证病变区域整体定位准确的同时,强化对小目标特征信息的挖掘利用,从而提高分割的准确性和鲁棒性。在KiTS19公开数据集上的实验结果表明,与其他分割算法相比,该方法各项指标表现良好,分割性能有显著提升。  相似文献   

5.
3D物体检测是计算机视觉的一个重要研究方向,在自动驾驶等领域有着广泛的应用.现有的前沿工作采用端到端的深度学习方法,虽然达到了很好的检测效果但存在着算法复杂度高、计算量大、实时性不够等问题.经过分析发现3D物体检测中的“部分任务”并不适合使用深度学习的方法进行解决,为此提出了一种基于异构方法的3D物体检测方法,该方法在检测过程中同时使用深度学习和传统算法,将检测过程划分为多任务阶段:1)利用深度学习方法从被检测图片中获取被检测物体的mask、物体类别等信息;2)基于mask,利用快速聚类方法从雷达点云空间中筛选出目标物体的表面雷达点;3)利用物体mask、类别、雷达点云等信息计算物体朝向、边框等信息,最终实现3D物体检测.对该方法进行了系统实现,称之为HA3D(a heterogeneous approach for 3D object detection).经实验表明:在针对汽车的3D检测数据集KITTI上,该方法与代表性的基于深度学习的3D物体检测方法相比,在检测精度下降接受范围内(2.0%),速度提升了52.2%,精确率与计算时间的比值提升了49%.从综合表现上来看,方法具有明显的优势.  相似文献   

6.
部分信道状态信息下簇规模均匀的基站群快速分簇方案   总被引:1,自引:0,他引:1  
李坤  黄开枝  鲁国英 《计算机应用》2012,32(7):1827-1830
在获取的信道状态信息(CSI)失真且信道快变的情况下,现有分簇方案需要获取全部基站的CSI且不能快速得到簇结构。针对以上问题,提出了一种基于近邻传播(AP)聚类思想的基站群快速分簇方案。该方案只需获取近邻基站间(部分)的CSI,通过近邻基站间协同的平均信干比(SIR)增益来构成稀疏化的相似度矩阵;然后,在近邻基站间进行协同信息的交互、更新,快速生成多个协同簇;最后,以簇合并带来的平均信干比增益大小为依据合并较小规模的簇,从而达到簇规模均匀的目的。仿真结果表明,与完全CSI下的现有分簇方案相比,所提方案不但收敛速度快,而且簇规模较均匀。  相似文献   

7.
基于近邻传播与密度相融合的进化数据流聚类算法   总被引:3,自引:0,他引:3  
邢长征  刘剑 《计算机应用》2015,35(7):1927-1932
针对目前数据流离群点不能很好地被处理、数据流聚类效率较低以及对数据流的动态变化不能实时检测等问题,提出一种基于近邻传播与密度相融合的进化数据流聚类算法(I-APDenStream)。此算法使用传统的两阶段处理模型,即在线与离线聚类两部分。不仅引进了能够体现数据流动态变化的微簇衰减密度以及在线动态维护微簇的删减机制,而且在对模型采用扩展的加权近邻传播(WAP)聚类进行模型重建时,还引进了异常点检测删除机制。通过在两种类型数据集上的实验结果表明,所提算法的聚类准确率基本能保持在95%以上,其纯度对比实验等其他相关测试都有较好结果,能够高实效、高质量、高效率地处理数据流数据聚类。  相似文献   

8.
针对高校实际数据质量检测过程中数据集存在缺失值以及发现的函数依赖个数较少且不准确的问题,提出了一种结合近邻传播(AP)聚类算法和TANE算法的高校函数依赖发现方法(APTANE)。首先,对数据集中的中文字段进行列剖析,将中文字段值用对应的数值来表示;其次,使用AP聚类算法对数据集中的缺失值进行填补;最后,使用TANE算法从处理好的数据集中自动发现出满足非平凡、最小要求的函数依赖。实验结果表明,在使用AP聚类算法对真实的高校数据集进行修复之后,相比于直接使用函数依赖自动发现算法,发现的函数依赖个数增加到了80个,经过缺失值填补后所发现的函数依赖在表示字段间关联关系时也更加准确,减少了领域专家的工作量,提升了高校数据所拥有数据的质量。  相似文献   

9.
基于亲和传递聚类的多类物体识别方法   总被引:1,自引:1,他引:0  
代松  李伟生 《计算机工程》2009,35(14):206-208
多类物体识别在提取特征之后,样本的数量会呈指数倍增加,为减少计算量同时,不降低识别率,采用亲和传递算法对样本数据进行聚类形成视觉字典,帮助并提升物体识别效率。在Sowerby图像数据库上进行实验证明,该方法与使用k均值聚类建立视觉字典方法相比,在同等条件下具有更高的识别率。  相似文献   

10.
戴珊  李广军 《计算机科学》2016,43(Z6):191-193
提出一种统一的图像自动分割模型。为了将图像分为颜色、纹理相近的不同的区域,提出了一个处理方法,具体分为两个步骤:首先,用改进的简单线性迭代聚类算法对输入图像进行预处理,即过分割;然后,用其低阶颜色矩表示这些区域的特征,并进一步利用近邻传播聚类算法将这些区域进行合并。在公开的数据集上进行了详细的实验,结果证明了所提算法的有效性和健壮性。  相似文献   

11.
Given an image sequence of a scene consisting of multiple rigidly moving objects, multi-body structure-and-motion (MSaM) is the task to segment the image feature tracks into the different rigid objects and compute the multiple-view geometry of each object. We present a framework for multibody structure-and-motion based on model selection. In a recover-and-select procedure, a redundant set of hypothetical scene motions is generated. Each subset of this pool of motion candidates is regarded as a possible explanation of the image feature tracks, and the most likely explanation is selected with model selection. The framework is generic and can be used with any parametric camera model, or with a combination of different models. It can deal with sets of correspondences, which change over time, and it is robust to realistic amounts of outliers. The framework is demonstrated for different camera and scene models. Most of the presented research was carried out while all three authors were at Monash University.  相似文献   

12.
    
Product Design based Knowledge graphs (KG) aid the representation of product assemblies through heterogeneous relationships that link entities obtained from multiple structured and unstructured sources. This study describes an approach to constructing a multi-relational and multi-hierarchical knowledge graph that extracts information contained within the 3D product model data to construct Assembly-Subassembly-Part and Shape Similarity relationships. This approach builds on a combination of utilizing 3D model meta-data and structuring the graph using the Assembly-Part hierarchy alongside 3D Shape-based Clustering. To demonstrate our approach, from a dataset consisting of 110,770 CAD models, 92,715 models were organized into 7,651 groups of varying sizes containing highly similar shapes, demonstrating the varied nature of design repositories, but inevitably also containing a significant number of repetitive and unique designs. Using the Product Design Knowledge Graph, we demonstrate the effectiveness of 3D shape retrieval using Approximate Nearest Neighbor search. Finally, we illustrate the use of the KG for Design Reuse of co-occurring components, Rule-Based Inference for Assembly Similarity and Collaborative Filtering for Multi-Modal Search of manufacturing process conditions. Future work aims to expand the KG to include downstream data within product manufacturing and towards improved reasoning methods to provide actionable suggestions for design bot assistants and manufacturing automation.  相似文献   

13.
针对有效利用图像底层视觉特征和图像语义特征进行图像标注,提出一种改进的AP(Affinity Propagation)聚类标注模型。首先采用半监督距离测度学习算法,融合图像语义信息,训练得到新的距离测度。然后使用新的距离测度对每一类图像进行AP聚类,生成各类图像的聚类中心,计算待标注图像到各类图像聚类中心的平均距离,确定待标注图像类别。最后计算待标注图像到类内各个聚类中心的距离,确定待标注图像类内类别,统计该类别下图像的标注词,作为待标注图像的标注词。在Corel5K和NUS-WIDE数据集上进行了实验,经验证,该方法有效提高了标注精度。  相似文献   

14.
In this paper, we propose a framework to reconstruct 3D models from raw scanned points by learning the prior knowledge of a specific class of objects. Unlike previous work that heuristically specifies particular regularities and defines parametric models, our shape priors are learned directly from existing 3D models under a framework based on affinity propagation. Given a database of 3D models within the same class of objects, we build a comprehensive library of 3D local shape priors. We then formulate the problem to select as-few-as-possible priors from the library, referred to as exemplar priors. These priors are sufficient to represent the 3D shapes of the whole class of objects from where they are generated. By manipulating these priors, we are able to reconstruct geometrically faithful models with the same class of objects from raw point clouds. Our framework can be easily generalized to reconstruct various categories of 3D objects that have more geometrically or topologically complex structures. Comprehensive experiments exhibit the power of our exemplar priors for gracefully solving several problems in 3D shape reconstruction such as preserving sharp features, recovering fine details and so on.  相似文献   

15.
三维形状分割是三维形状分析中的一个重要问题.为了使分割结果能适应非刚体丰富的姿态变化,提出一种基于扩散几何的三维网格分割方法.该方法采用波核特征的局部极值点作为非刚体网格模型表面的显著特征点;进而将显著特征点作为初始聚类中心,采用K-均值聚类算法来获得分割结果.实验结果表明,文中方法不仅对处于不同姿态的非刚体三维形状具有良好的分割一致性,而且对噪声、孔洞等具有较好的鲁棒性.  相似文献   

16.
A review of deformable surfaces: topology, geometry and deformation   总被引:12,自引:0,他引:12  
Deformable models have raised much interest and found various applications in the fields of computer vision and medical imaging. They provide an extensible framework to reconstruct shapes. Deformable surfaces, in particular, are used to represent 3D objects. They have been used for pattern recognition [Computer Vision and Image Understanding 69(2) (1998) 201; IEEE Transactions on Pattern Analysis and Machine Intelligence 19(10) (1997) 1115], computer animation [ACM Computer Graphics (SIGGRAPH'87) 21(4) (1987) 205], geometric modelling [61][Computer Aided Design (CAD) 24(4) (1992) 178], simulation [Visual Computer 16(8) (2000) 437], boundary tracking [ACM Computer Graphics (SIGGRAPH'94) (1994) 185], image segmentation [Computer Integrated Surgery, Technology and Clinical Applications (1996) 59; IEEE Transactions on Medical Imaging 14 (1995) 442; Joint Conference on Computer Vision, Virtual Reality and Robotics in Medicine (CVRMed-MRCAS'97) 1205 (1997) 13; Medical Image Computing and Computer-Assisted Intervention (MICCAI'99) 1679 (1999) 176; Medical Image Analysis 1(1) (1996) 19], etc. In this paper we propose a survey on deformable surfaces. Many surface representations have been proposed to meet different 3D reconstruction problem requirements. We classify the main representations proposed in the literature and we study the influence of the representation on the model evolution behavior, revealing some similarities between different approaches.  相似文献   

17.
    
In recent years, point cloud representation has become one of the research hotspots in the field of computer vision, and has been widely used in many fields, such as autonomous driving, virtual reality, robotics, etc. Although deep learning techniques have achieved great success in processing regular structured 2D grid image data, there are still great challenges in processing irregular, unstructured point cloud data. Point cloud classification is the basis of point cloud analysis, and many deep learning-based methods have been widely used in this task. Therefore, the purpose of this paper is to provide researchers in this field with the latest research progress and future trends. First, we introduce point cloud acquisition, characteristics, and challenges. Second, we review 3D data representations, storage formats, and commonly used datasets for point cloud classification. We then summarize deep learning-based methods for point cloud classification and complement recent research work. Next, we compare and analyze the performance of the main methods. Finally, we discuss some challenges and future directions for point cloud classification.  相似文献   

18.
针对近邻传播聚类(AP)中偏向参数和阻尼因子设定导致聚类效果有一定局限性的问题,提出了一种基于教与学优化算法(TLBO)的近邻传播聚类.首先确定偏向参数p的搜索空间,然后使用教与学优化算法在搜索空间中寻找最优参数值,同时在聚类过程中自适应调整阻尼因子防止发生震荡,从而提高AP算法的聚类质量.实验表明,该算法能有效的解决...  相似文献   

19.
针对三维形状分割问题,提出一种引入权重能量自适应分布参与深度神经网络训练的全监督分割算法.首先对三维形状表面进行过分割得到若干小块,提取每一个小块的特征描述符向量作为神经网络的输入,计算权重能量自适应分布,将经过加权后的分割标签作为神经网络的输出,训练深度神经网络.对于新的未分割的三维模型,提取模型表面三角面片的特征向量后输入到神经网络中进行预测分割后,对预测分割的边缘进行修整得到分割结果,实现三维模型的自动分割.在普林斯顿三维模型分割数据集上的实验结果表明,算法通过在训练过程中引入权重能量自适应分布,可以大幅降低神经网络训练时的均方误差,提高神经网络预测结果的准确率;与传统算法相比,该算法具有高准确率、强鲁棒性、强学习扩展能力等优点.  相似文献   

20.
近邻传播算法在非凸形、密度不均匀的数据集上很难得到理想的聚类结果。为此,基于核聚类的思想,将数据集非线性地映射到高维空间,使数据集更加分离。利用共享最近邻的相似度度量方法,提出一种密度不敏感的近邻传播算法DIS-AP,以弥补原算法易受特征集维数和密度影响的缺点,从而有效解决数据集非凸和密度不均匀问题,拓宽算法的应用范围。仿真实验结果证明,DIS-AP算法具有更好的聚类性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号