首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 700 毫秒
1.
Conventional disk drive motors supported on ball bearings (BBs) cause nonrepeatable runout (NRRO) due to the surface imperfections on balls and raceways. NRRO is a source of track misregistration between head and disk that inhibits high track density in a hard disk drive. Fluid dynamic bearings with herringbone grooves either on the rotating or stationary surfaces are a suitable replacement for conventional ball bearings. Herringbone grooved bearings have considerably lower noise level than ball bearings and have better stability compared to plain journal bearings at concentric operating position. However, herringbone-grooved patterns are difficult to manufacture because groove depth is of the order of bearing clearance. The major limitation of the BBs is the direct contact between the rotating and stationary parts and also lack of damping effects. This present work attempts to overcome these drawbacks in BBs by eliminating the metal-to-metal contact using a layer of fluid film, and a theoretical analysis of stability characteristics of a floating BB is presented. Results indicate that there is an improvement in the stability of floating BB rotor systems with increase in outer to inner film clearance ratio (β) from 0.7 to 1.3, and with decrease in ratio of outer race radius to inner race radius (δ) from 3.0 to 1.2.  相似文献   

2.
为了确保支撑部位润滑良好,往往需要在轴或轴承表面设计各种油槽,然而增加油槽会伴随着泄油量的增加,影响其他零部件的润滑。为探讨油槽结构对滑动轴承泄油量的影响,采用不同的油槽结构设计方案设计3种齿轮滑动轴承。将轴承的总泄油分为油槽泄油和间隙泄油两部分,分别采用CFD仿真计算油槽泄油量,采用一维仿真计算间隙泄油量。基于某款轻型柴油机润滑系统的仿真试验,验证了计算方法的有效性。结果表明:无油槽的滑动轴承总泄油量最少,仅增加轴向油槽,轴承的总泄油量略有增加,同时增加轴向和周向油槽,轴承的总泄油量显著增加。对于润滑油总流量较低的轻型发动机,应合理设计滑动轴承的油槽结构,避免因泄油过多导致的润滑油压力不足问题。  相似文献   

3.
The current research of hydrodynamic bearing in blood pump mainly focuses on the bearing structure design.Compared with the typical plane slider bearing and Rayleigh step bearing,spiral groove bearing has excellent performance in load-carrying capacity.However,the load-carrying capacity would decrease significantly with increasing flow rate in conventional designs.In this paper,the special treatment is made to the upper spiral groove bearing to make sure that both the circulatory flowing and load-carrying capacity are high.Three-dimensional computational fluid dynamics(CFD) models in the space between rotor and shaft are developed by using FLUENT software.Effects of groove number,film height and groove depth on load-carrying capacity of the spiral groove bearings are investigated by orthogonal experiment design.The experimental results show that film height is the most remarkable factor to the load-carrying capacity.The variation tendency of load-carrying capacity reveals that the best combination of geometry is the one with groove number of 8,film height 0.03 mm and groove depth 0.08 mm.The velocity and pressure distributions in spiral groove bearings are also analyzed,and the analysis result shows that the distributions are in conformity with the design of the blood pump based on the principle of hydrodynamic bearing.The displacement of the rotor with the best combination parameters is tested by using laser displacement sensors,the testing result shows that the suspending performance is satisfactory both in axial and radial directions.This research proposes a bearing design method which has sufficient load-carrying capacity to support rotor as an effective passive hydrodynamic bearing.  相似文献   

4.
Abstract

In recent years, extensive use of smart lubricants has been made in order to control the tribological performance of fluid film bearings. The grooved surfaces of the journal bearing greatly influence the performance of bearings. In the present work, various geometric shapes of herringbone grooves (rectangular, triangular, and parabolic) with groove angles (30° and 60°) have been considered to numerically simulate the performance of slot-entry bearings. The work reported in this article deals with the numerical simulation of magnetorheological (MR) fluid–lubricated slot-entry herringbone-grooved hybrid journal bearings. Dave equation, a constitutive relation of the Bingham model, was employed to simulate the flow behavior of MR fluid. Using the finite element method (FEM), the governing Reynolds equation for a hybrid slot-entry bearing model was solved. The result shows that the use of a herringbone-grooved surface and application of MR fluid in a slot-entry bearing offers better stability and higher fluid film stiffness and minimizes frictional torque.  相似文献   

5.
A thermohydrodynamic model of spherical spiral groove bearings is presented by considering the effect of bearing temperature change on the material property of lubricant, gas flow characteristics in the grooves, and thermal energy transported in the entire bearing system. A gas mixing model in the grooves is introduced as the boundary condition to solve the bearing temperature distribution simultaneously with the heat conduction at the shaft and the housing. The bearing and rotor expansion caused by temperature increases, which is considerable compared to bearing clearance, is also examined. Prediction results show that the thermal expansion determined by actual bearing clearance has a crucial influence on the bearing load capacity. Manufacturing bearings with proper materials has significant effects on controlling thermal expansion effects on the bearing performance. The load capacity, which corresponds to the lubricant gas pressure, and gas suck flow rate have the same variation tendencies as the variation in groove depth and spiral angle. These similar tendencies have an opposite influence on the temperature and result in the temperature increase not being affected by the variation in grooves. However, varying the groove characteristics has a similar effect in carrying away the thermal energy as the variation in heat transfer coefficient, which could significantly control the temperature increase at the same time.  相似文献   

6.
设计带人字槽和轴向微通槽的动静压气体轴承,运用FLUENT对其静态特性进行仿真分析,通过改变轴向微通槽深度、偏心率、气膜厚度、供气压力等参数,研究其对轴承刚度和承载能力的影响。结果表明:其他条件不变,偏心率越大,轴承刚度越小、承载能力越大;人字槽可以提升气体轴承的承载能力和刚度,主轴转速越快,动压效应越强,轴承刚度和承载能力越大;随微通槽深度增加,轴承刚度先增大后保持稳定,轴承承载能力先增大后减小,因此当微通槽深度过大时,轴承刚度变化不大,但轴承承载能力会减小。  相似文献   

7.
为解决波度端面机械密封精密加工困难的问题,基于收敛型槽具有较低的泄漏量和较高的流体静压效应的特点,提出一种由波度端面机械密封结构衍生变化的阶梯收敛槽机械密封结构,考虑空化作用,对不同结构参数及工况参数下机械密封密封性能进行CFD流体仿真分析。结果表明:工况参数及结构参数对液膜空化效应有显著的影响,其中随着膜厚、密封压力以及槽深的增加,液膜空化效应均减弱,随着转速的增大,液膜空化效应变强。以开漏比评价密封性能,结果表明,阶梯收敛槽机械密封在小膜厚、高转速、较低密封压力以及较小静环开槽深度下运行时可获得最优密封性能;但为保证密封端面液膜具有足够的承载力,开槽深度不宜过小。  相似文献   

8.
Aerostatic rectangular double-pad thrust bearings with compound restrictors have often been used in linear guideway systems of ultra-precision machine tools and precision measuring equipments, because high bearing stiffness is easily achieved in these bearings. However, in actual devices, various dynamic loads as well as static loads are imposed on these aerostatic bearings. Therefore, in this paper, the dynamic stiffness and damping coefficient of this type of bearing for tilt motion of a shaft are investigated, both theoretically and experimentally. It was consequently found that the dynamic tilt characteristics of the aerostatic thrust bearings considered in this paper are greatly influenced not only by design parameters such as the groove position and the groove depth but also by the squeeze effect.  相似文献   

9.
以球面螺旋槽气体动压轴承为研究对象,建立了球面螺旋槽气体动压轴承的润滑分析数学模型,基于CFD技术,采用流体动力学Fluent软件,对球面螺旋槽气体动压轴承的三维气膜压力场进行分析,揭示不同转速下,轴承槽宽比、槽深比、螺旋角、气膜间隙对稳态轴承气膜压力以及承载能力的影响规律,并在此基础上,对轴承的结构参数进行了优化。结果表明,应用Fluent软件进行数值分析可以精确地模拟区域内气膜的复杂流场特性,并且转速越高,气体轴承内部的动压效应就越明显,因此合理地选择轴承结构参数和运行参数有助于改善润滑性能,提高轴承的稳态承载特性。  相似文献   

10.
基于唇形油封的反向泵送作用密封原理,提出了一种轴表面矩形微螺旋槽织构,以提升油封密封性能;建立了油封唇口稳态的符合质量守恒的流体润滑理论模型,考虑了油封唇口表面粗糙形貌和弹性变形的影响,采用有限元法求解流体压力控制方程,获得了泵送率和摩擦扭矩等性能参数,研究了矩形微螺旋槽织构参数和轴转速对油封密封性能的影响规律。结果表明:泵送率具有随微螺旋槽角度的增大而呈先缓慢增大后逐渐减小,且螺旋角最佳值约25°,随微螺旋槽深度、线数和轴转速的增大而增大等变化规律;摩擦扭矩具有随微螺旋槽角度、深度的增大而减小,随微螺旋槽线数的增大而增大,随轴转速的增大而呈先增大后减小以至趋于稳定等变化规律。研究结果为轴表面微槽织构提高油封密封性能的设计与应用提供了参考。  相似文献   

11.
随着勘探深度的增加,地层压力升高和岩石硬度增加,螺杆钻具经常发生横向涡动、纵向跳动、扭向振动及黏滑现象,限制了冲击螺杆钻具的推广应用。为研究高温、高转速和往复运动耦合作用下传动轴总成密封特性及参数敏感性具,对比相同工况下星形圈、O形圈和组合圈密封特性,得到不同密封圈在静密封、动密封状态下接触压力分布,根据主密封面接触压力判定方法得到最佳密封圈结构。根据该结构研究沟槽敏感参数,并讨论沟槽形状、位置、数目和宽度等对组合圈密封特性的影响。结果表明:组合圈密封效果远远优于O形圈及星形圈;沟槽形状采用等腰三角形、沟槽数目为3时密封性能最优,沟槽位置于中间最合理;静、动密封状态下,主密封面接触压力随沟槽宽度增大而增大,而静密封状态下次接触面接触压力及O形圈应力几乎不变。  相似文献   

12.
A hydrodynamic bearing with non‐uniform herringbone grooves has been developed for use with high‐speed motor spindles. The grooves gradually become narrower, shallower and less straight (curved) towards the herringbone centre along axial direction, resulting in an increased pumping effect of the spiral grooves. The optimum dimensions of the grooves for increasing the critical bearing number were clarified theoretically, and bearings with non‐uniform herringbone grooves were found to increase the critical bearing number against the half‐frequency whirl up to about 50% in comparison to bearings with uniform herringbone grooves. Experiments to investigate the suitability of the proposed bearing for high‐speed spindles showed that the maximum rotational speed of a spindle with this bearing was about 20% higher, close to the theoretically predicted 23%, and thus proved that application of this bearing should enable spindles to achieve faster stable rotation as theoretically expected. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
针对水压柱塞泵U形阻尼槽的结构参数进行研究,通过流场仿真对比不同阻尼槽结构参数下水压柱塞泵的流量特性,确定水压柱塞泵的压力、流量脉动率最优的阻尼槽结构参数,从而降低水压柱塞泵的流体振动。仿真结果表明,在现有结构参数下当水压柱塞泵阻尼槽宽度设置为2mm、深度为0.8mm、配流盘预升/泄闭死压角为11.8°时,柱塞泵的压力和流量脉动率最小。开展了水压柱塞泵的振动试验,对比了阻尼槽优化前后的试验数据,试验结果表明优化后的阻尼槽结构能够有效降低水压柱塞泵的振动。  相似文献   

14.
In this paper, two types of water-lubricated hydrostatic conical bearings with spiral grooves for high-speed spindles are investigated. One has a rigid bearing surface and the other has a compliant one. In these bearings, pressurized water is first fed to the inside of the rotating shaft and then introduced into spiral grooves through feeding holes. Therefore, water pressure is increased due to the effect of the centrifugal force at the outlets of the feeding holes by shaft rotation and, furthermore, water pressure is also increased by the viscous pump effect of spiral grooves. The static characteristics of these bearings are theoretically predicted and calculated results are compared with experimental results. It was found that the compliant surface bearing had a larger load capacity in a relatively large bearing clearance than the rigid surface bearing, and lower bearing power consumption in a small bearing clearance although the load capacity is reduced.  相似文献   

15.
李树森  杨非  陈群  陈宝 《润滑与密封》2023,48(10):23-29
基于仿生学原理和几何重构法,在动静压气体轴承上设计具有鸟翼轮廓仿生槽,以提高其承载能力及刚度。运用变分法求解雷诺方程并使用FLUENT软件,对鸟翼轮廓仿生槽动静压气体轴承进行静态特性仿真分析,研究轴颈转速、供气压力、偏心率、槽深以及槽偏角对轴承静态特性的影响。结果表明:在偏心率相同时,随着轴颈转速的增加,轴承承载能力和刚度随之增大,随着供气压力的增加,轴承承载能力逐渐增加、刚度逐渐减小;当气膜厚度一定时,随着槽深的增加,轴承承载能力和刚度呈现先增加后减小的趋势,随着槽偏角的增加,轴承承载能力和刚度呈现先增加后减小的趋势。  相似文献   

16.
针对人字槽狭缝节流动静压气体轴承,采用SolidWorks软件进行三维建模,采用ICEM软件分区对三维模型进行网格划分,运用ANSYS 环境下的Fluent 软件进行仿真求解。研究了轴承转速n、狭缝类型(连续狭缝与非连续狭缝)、狭缝数m、人字槽数N、偏心率ε等轴承参数对人字槽狭缝节流动静压气体轴承的静态特性的影响规律。结果表明:随着轴承转速的提高,轴承的静态特性提高,非连续狭缝和连续狭缝对人字槽动静压轴承的承载力、静刚度以及耗气量的影响趋势相同;从轴承的承载力、静刚度以及耗气量考虑,非连续狭缝的静态特性优于连续狭缝。当偏心率ε约为0.6,人字槽面积占轴承内壁表面积约为0.1,人字槽个数N为10~12,狭缝段数m为7以及狭缝宽度b1为16~18 μm时,人字槽狭缝节流动静压气体轴承的静态特性最佳。  相似文献   

17.
为探究齿面沟槽织构参数对渐开线圆柱直齿轮润滑性能的影响,简化齿轮啮合模型选取并建立单元沟槽CFD仿真模型,通过分别求解未考虑和考虑空化效应的2种仿真模型,获得不同沟槽尺寸参数对模型润滑性能的影响规律。结果表明:沟槽织构的存在改变了流体域油膜压力分布状态,具有更高的油膜承载力和更好的动压性能;不考虑空化效应时,油膜承载力大小与沟槽宽度的变化密切相关,而受沟槽深度变化的影响较小,沟槽织构浅且宽时齿面具有更好的润滑性能;考虑空化效应后,表面润滑性能随沟槽宽度与深度的变化而动态变化,相较于不考虑空化效应,沟槽宽度更窄、深度更深时齿面具有更好的润滑性能;在沟槽深度与宽度均较小时,空化效应对动压性能的影响不是很大,在沟槽深度较小而沟槽宽度较大时,空化效应对动压性能的影响较大;而在沟槽深度较大时,空化效应对动压性能的影响始终较大,且不受沟槽宽度变化的影响。  相似文献   

18.
为研究旋转组合密封圈表面结构对密封性能的影响规律,对方圈表面分别加工单槽和双槽等不同表面结构,利用ABAQUS仿真分析不同表面结构的旋转组合密封圈在完成过盈安装与流体加载后的应力及接触压力分布,并研究油槽宽度变化对组合密封性能的影响.仿真结果表明:在过盈安装与流体加载情况下,O形圈的最大vonMises应力均有所减少,...  相似文献   

19.
Externally pressurized grooved gas thrust bearings for shaft systems were studied both numerically and experimentally. Three thrust bearings composed of a symmetric pair of rings facing a shaft collar were tested. The rings, with inner and outer diameters of 52 and 110 mm, respectively, are equipped with a polar array of eight holes, with a 0.35-mm diameter, distributed on a 65-mm-diameter circumference. The influence of a circumferential groove situated in correspondence with the supply holes is discussed. In particular, two thrust bearings have a rectangular cross-sectional groove of 0.7-mm width and 10- and 20-μm depth. A numerical model based on Reynolds' equation is used to study thrust-bearing performance in relation to geometry (diameter of supply holes, clearance, and groove dimensions). A test rig is used to monitor thrust-bearing axial load capacity and stiffness, and evaluate damping and stability at different supply pressure rates. Experimental and numerical results are compared and discussed.  相似文献   

20.
为了研究沟槽结构对船用水润滑轴承润滑特性的影响机制,采用有限元法,通过对简化后的椭圆形沟槽的二维模型进行流体动力学CFD分析,从迹线以及涡流等方面分析沟槽结构参数对沟槽内部流体特征的影响,得到不同状态下沟槽内部的压力轮廓,并分析沟槽结构参数对水润滑轴承摩擦因数的影响和轴承的润滑机制。结果表明:沟槽的大小影响轴承间隙内流体的流通面积,沟槽的结构特征影响沟槽内的流体黏度。研究结果可为水润滑轴承优化设计提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号