首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new approach to thermally induced volumetric error compensation   总被引:3,自引:3,他引:0  
A traditional model for thermally induced volumetric error of a three-axis machine tool requires measurement of 21 geometric error components and their variation data at different temperatures. Collecting these data is difficult and time consuming. This paper describes the development of a new model for calculating thermally induced volumetric error based on the variation of three error components only. The considered error components are the three axial positioning errors of a machine tool. They are modelled as functions of ball-screw nut temperature and travel distance to predict positioning errors when the thermal condition of the machine tool has changed due to continuous usage. It is assumed that the other 18 error components remain identical to the pre-calibrated cold start values. This assumption is justified by the fact that the machine tool’s thermal status significantly affects three axial positioning errors that dominate machining errors for a machine tool after its continuous use. To demonstrate the effectiveness of the proposed model two types of machining jobs, milling and drilling, on a three-axis horizontal CNC machining centre are simulated and the machined part profiles are predicted. The results show that the thermally induced volumetric error was reduced from 115.40 to 45.37?μm for the milled surface, and the maximum distance error between drilled holes for the drilling operation was reduced from 38.69 to ?0.14?μm after compensation.  相似文献   

2.
Thermally induced elongation of a screw is the primary cause of deterioration in the positioning accuracy of half-closed-loop screw systems in machine tools. The failure mode of ball-screw feed-drive systems in relation to the positioning accuracy is defined as the response error of the carriage exceeding the axial tolerance. It is still challenging to accurately predict the thermal errors using conventional methods because the randomness of the influencing factors is not considered. This paper presents an improved random thermal network model subjected to dynamic thermal excitation for calculating real-time transient temperatures of ball-screw systems. Furthermore, a time-varying reliability model is proposed for estimating the gradual reliability of the thermally induced positioning accuracy of ball-screw systems with random thermal boundary parameters using the random thermal network. A ball-screw system of a computerized numerical controlled lathe is used as an example to show the practical application of the proposed model. Repeated experiments demonstrate the accuracy retaining ability and robustness of this method. This work provides the theoretical and practical method for real-time monitoring of the positioning accuracy reliability index for ball-screw systems and it has high accuracy considering the random parameters.  相似文献   

3.
无温度传感器的数控机床进给轴热误差补偿   总被引:1,自引:0,他引:1  
分析了目前常见的进给轴热误差补偿方法的缺点,如需要多个温度传感器、模型的鲁棒性较差等。提出一种基于无温度传感器的、强鲁棒性的机床进给轴热误差补偿方法,在恒温环境下实现对运动生热导致的热误差的补偿。给出了热误差模型的推导过程以及应用ISIGHT平台进行参数优化的过程。热误差模型基于摩擦生热、热传导和散热机理实时预测滚珠丝杠的温度场,以实现预测并补偿丝杠热误差的目的。在一台立式加工中心VMC850上对x、y、z轴进行了热误差测试并给出了模型的仿真效果。在另一台立式加工中心VMC850上采用激光干涉仪进行了热误差补偿前后的对比试验和加工对比试验。试验结果表明,该热补偿方法具有很高的精度稳定性和强鲁棒性。  相似文献   

4.
为大幅提升立式加工中心加工精度,满足当代数控机床对高精度的需求,针对立式加工中心3个运动轴,深入分析了其轴向运动空间几何误差,提出了可有效辨识运动轴轴向运动空间6项几何误差的辨识方法.建立了空间6项几何误差辨识模型,并针对关联轴联动垂直度误差进行了有效分析,建立了垂直度误差辨识解析模型.同时,针对3个独立运动轴轴向定位...  相似文献   

5.
Parallel manipulators have the potentials of high efficiency and high precision in the field of machining and manufacturing. However, accuracy improvement of the parallel manipulator is still an essential and challenging issue, encountering two important problems. Firstly, the ignorance of elastic deformation caused by gravity or deviations of static stiffness model restricts further improvement of accuracy. To solve this problem, an elasto-geometrical error modeling method is proposed. The comprehensive effects of structural errors, elastic deformation under gravity and compliance parameter errors on pose deviations are disclosed. On this basis, the identification equation of actual structural errors and compliance parameter errors can be established. Secondly, the ill-conditioned identification matrix and the identification equation with anisotropic residual error can lead to inaccurate identification results. To solve this problem, a weighted regularization method is proposed. The identification equation with isotropic residual error is built, and accurate identification can be realized with the regularization method. Based on the proposed methods, the error compensation experiment is conducted on the prototype of a five-axis parallel machining robot using a laser tracker. Experiment results show that the accuracy of the machining robot is significantly improved after compensation. An M1_160 test piece and an S-shaped test piece are machined and measured to further validate the effectiveness of the proposed methods. The elasto-geometrical error modeling method and the weighted regularization method can be applied to other parallel manipulators’ accuracy improvement.  相似文献   

6.
During the machining process, cutting forces cause deformation of thin-walled parts and cutting tools because of their low rigidity. Such deformation can lead to undercut and may result in defective parts. Since there are various unexpected factors that affect cutting forces during the machining process, the error compensation of cutting force induced deformation is deemed to be a very difficult issue. In order to address this challenge, this article proposes a novel real time deformation error compensation method based on dynamic features. A dynamic feature model is established for the evaluation of feature rigidity as well as the association between geometric information and real time cutting force information. Then the deformations are calculated based on the dynamic feature model. Eventually, the machining error compensation for elastic deformation is realized based on Function Blocks. A thin-walled feature is used as an example to validate the proposed approach. Machining experiment results show that the errors of calculated deformation with the monitored deformation is less than 10%, and the thickness errors were between ?0.05 mm and +0.06 mm, which can well satisfy the accuracy requirement of structural parts by NC (Numerical Control) machining.  相似文献   

7.
The compliance effect of a high-speed ball-screw feed-drive system is modelled in this work. A mechanical model of a ball-screw feed drive system including the motor, ball-screw, coupling, supporting bearing, linear guide and machine structure was developed. It was found that at high acceleration, the mechanical compliance caused a significant contouring error. Smoothing the acceleration and deceleration control input command did improve the transient deviation in the contouring error. However, the steady state error caused by the elastic elongation in the mechanical elements was not improved. It was also shown that the inertia force of the slide and saddle comprised the dominant loading on a high speed machine tool drive mechanism. A topology structure optimisation method is proposed to reduce the moving weight. This method can help the designer efficiently reduce the moving weight of a machine tool axis in a systematic way. More than a 30% weight reduction was demonstrated in a spindle carrier structural design.  相似文献   

8.
工业机器人定位误差在线自适应补偿   总被引:1,自引:0,他引:1  
受工业机器人本体结构几何及非几何误差因素的影响,机器人执行末端的实际运动轨迹与其理论规划轨迹往往不一致,这严重限制了机器人在加工领域的拓展应用。另外,通过研究发现机器人除在工作空间上定位误差等级存在差异分布外,在服役时间上随着机器人工作性能的退化也会显著恶化其定位精度。为解决该问题,提出了一种基于定长记忆窗增量学习的机器人定位误差在线自适应补偿方法。在该方法中,首先定量分析机器人定位误差与位姿的相关关系,将工作空间划分为多个位姿区块并创建校准样本库,建立了位姿映射模型的自适应优化机制以克服空间中误差等级差异分布的问题;然后设计了定长记忆窗增量学习算法,克服神经网络模型的灾难性遗忘缺陷,并平衡了在线模式下建立机器人新、旧位姿数据映射关系的精度和效率,解决了机器人性能退化加剧定位误差影响位姿映射模型适用性的问题,从而确保算法的补偿精度稳定在目标精度水平线以上;最后,利用St?ubli机器人和UR机器人对所提方法进行了精度在线补偿实验验证。实验结果表明该方法可将St?ubli机器人的定位误差从0.85 mm降至0.13 mm,将UR机器人的定位误差从2.11 mm降至0.17 mm,明显提高...  相似文献   

9.
崔晶  王迪凡 《光学精密工程》2015,23(4):1081-1087
针对音圈电机驱动的X-Y定位平台中稳态误差导致的系统定位精度较低的问题,提出了基于敏感函数逆的前馈补偿控制方法。首先,采用频域辨识方法建立了系统模型,基于终值定理推导出系统扰动和稳态误差的关系,并由此设计了敏感函数的逆模型来补偿扰动对稳态误差的影响,从而提高系统精密定位性能。最后,在搭建的音圈电机驱动X-Y定位平台上进行了不同运动行程的实验研究。实验结果表明:在行程为10μm,最大加速度为6mm/s2的微定位运动条件下,补偿后的定位误差可由2μm降低到0.2μm;在行程为10mm,最大加速度为6m/s2的宏定位运动条件下,定位误差可由2μm降低到0.4μm。实验结果验证了本方法的有效性,为后续高精密伺服系统的研制提供了重要参考和设计依据。  相似文献   

10.
利用多体系统理论,在典型体的坐标变换中,加入了位移误差矢量和位置误差矢量,形成了具有普遍意义的坐标变换,根据机床拓扑结构的低序体阵列,建立了机床通用误差计算模型。同时,对机床的主轴热变形和床身热变形进行了建模和辨识,通过5个温度敏感点的监测,用常规的5点法对机床主轴热变形进行研究,运用神经网络方法(RBF)建立温度与变形参数模型,将误差参数集成到通用误差模型中。在Makino四轴加工中心进行试验研究,设计出一套多个凸台的空间曲面,比较了不同凸台上的4个点补偿前后空间轮廓数据,误差减少60%,补偿效果显著。  相似文献   

11.
Tracking of triangular or sawtooth waveforms is a major difficulty for achieving high-speed operation in many scanning applications such as scanning probe microscopy. Such non-smooth waveforms contain high order harmonics of the scan frequency that can excite mechanical resonant modes of the positioning system, limiting the scan range and bandwidth. Hence, fast raster scanning often leads to image distortion. This paper proposes analysis and design methodologies for a nonlinear and smooth closed curve, known as Lissajous pattern, which allows much faster operations compared to the ordinary scan patterns. A simple closed-form measure is formulated for the image resolution of the Lissajous pattern. This enables us to systematically determine the scan parameters. Using internal model controllers (IMC), this non-raster scan method is implemented on a commercial atomic force microscope driven by a low resonance frequency positioning stage. To reduce the tracking errors due to actuator nonlinearities, higher order harmonic oscillators are included in the IMC controllers. This results in significant improvement compared to the traditional IMC method. It is shown that the proposed IMC controller achieves much better tracking performances compared to integral controllers when the noise rejection performances is a concern.  相似文献   

12.
袁明 《机械与电子》2023,41(5):76-80
薄壁盘由于材料刚性较差等原因难以确保零件加工精度,容易引起变形,对此,提出了高温合金薄壁盘复杂零件加工变形控制方法。分析零件加工过程中产生的变形因素,包括夹装方式、刀具性能参数、工件自身因素、机床定位精度不够以及温度控制不佳等;确立所有工序历史误差源集合,生成误差传递矩阵,构建变形误差源诊断模型;针对不同误差源,提出针对性控制方法,通过最小二乘多项式拟合算法计算让刀误差,并对其补偿;通过有限元分析法建立工件几何模型,设立刚度控制函数,弥补工件自身缺陷;针对机床定位精度和温度分别设计控制函数,实现零件加工变形的综合控制。实验结果表明,所提方法明显减少了零件加工变形现象,保证了切削力平稳,提高了零件质量。  相似文献   

13.
永磁同步直线电机由于反电势和逆变器频繁切换导致电流谐波分量较大,同时参数时变以及负载突变等扰动严重影响伺服系统的控制精度。本文采用一种基于降阶状态观测器的双环自抗扰伺服控制算法,以降低控制系统的谐波抑制从而提高控制精度。首先,构造了位置速度环级联的二阶自抗扰控制器。运用极点配置法对三阶线性状态观测器进行降阶,减小了相位滞后的影响,提高了伺服系统的控制精度;其次,电流环采用一阶非线性自抗扰控制器,消除了积分饱和的影响,降低了三相电流的谐波含量。最后,与基于自抗扰控制的其他优化算法进行对比,实验表明在多工况下降阶双环自抗扰控制的总谐波失真不超过2.13%,推力波动可减小至1.49%,稳态误差不大于15μm。  相似文献   

14.
虚拟加工中的加工误差分析与预测   总被引:8,自引:0,他引:8  
分析了影响虚拟环境下复杂曲面产品数字化端铣加工误差产生的主要因素,综合考虑刀具和工件的柔度,同时考虑加工表面的变形敏感度,讨论面向虚拟制造的加工尺寸误差预测模型总体框架,提出了一个端铣加工过程表面加工尺寸误差预测模型。所给出的表面误差预测模型较全面地考虑了端铣加工过程,适于多种加工条件,能够反映端铣加工过程由切削力导致的系统变形对加工误差所造成的影响。最后给出了一个仿真实例。  相似文献   

15.
Thin webs are widely used in the aerospace industry for the advantages of compact structure, light weight and high strength-to-weight ratio. Due to its low rigidity, serious machining error may occur, therefore, Finite Element method and mechanism analysis are usually utilized to modeling its deformation. However, they are very time-consuming and only suitable for elastic deformation error. In this study, an integrated error compensation method is proposed based on on-machine measurement (OMM) inspection and error compensation. The OMM inspection is firstly applied to measure the comprehensive machining errors. The Hampel filtering is then used to eliminate outliers, followed by the triangulation-based cubic interpolation as well as a machine learning algorithm which are used to establish the compensation model. At last, the real time compensation of high-density cutting points is realized by developing the compensation system based on External Machine Zero Point Shift (EMZPS) function of machine tool. Three sets of machining experiment of a typical thin web part are conducted to validate the feasibility and efficiency of the proposed method. Experiment results revealed that after compensation, the comprehensive machining errors were controlled under different machining conditions and 58.1%, 68.4% and 62.6% of the machining error ranges were decreased, respectively. This method demonstrates immense potential for further applications in efficiency and accuracy improvement of thin-walled surface parts.  相似文献   

16.
Taper-cutting is a common application of the wire electrical discharge machining (WEDM) process used for the production of parts with complex geometry such as extrusion dies in wear-resistant materials, cutting dies, etc. During cutting, the wire is subject to deformation, resulting in deviations in the inclination angle of machined parts. This fact causes dimensional errors and loss of tolerances that can lead to the rejection of high added-value tooling. Currently, WEDM machine manufacturers propose time-consuming experimental trial-and-error methodologies for the correction of the errors. To reduce the experimental load and to contribute a more general approach to the problem, two original models for the prediction of angular error in WEDM taper-cutting are presented here. Results show that part thickness and taper angle are the most influencing variables in the problem. Experimental validation of the proposed models shows that angular error can be reduced below 3′45′′ in 75% of cases.  相似文献   

17.
A machining test of cone frustum, described in NAS (National Aerospace Standard) 979, is widely accepted by machine tool builders to evaluate the machining performance of five-axis machine tools. This paper discusses the influence of various error motions of rotary axes on a five-axis machine tool on the machining geometric accuracy of cone frustum machined by this test. Position-independent geometric errors, or location errors, associated with rotary axes, such as the squareness error of a rotary axis and a linear axis, can be seen as the most fundamental errors in five-axis kinematics. More complex errors, such as the deformation caused by the gravity, the pure radial error motion of a rotary axis, the angular positioning error of a rotary axis, can be modeled as position-dependent geometric errors of a rotary axis. This paper first describes a kinematic model of a five-axis machine tool under position-independent and position-dependent geometric errors associated with rotary axes. The influence of each error on machining geometric accuracy of a cone frustum is simulated by using this model. From these simulations, we show that some critical errors associated with a rotary axis impose no or negligibly small effect on the machining error. An experimental case study is presented to demonstrate the application of R-test to measure the enlargement of a periodic radial error motion of C-axis with B-axis rotation, which is shown by present numerical simulations to be among potentially critical error factors for cone frustum machining test.  相似文献   

18.
Low weight and good toughness thin plate parts are widely used in modern industry, but its flexibility seriously impacts the machinability. Plenty of studies focus on the influence of machine tool and cutting tool on the machining errors. However, few researches focus on compensating machining errors through the fixture. In order to improve the machining accuracy of thin plate-shape part in face milling, this paper presents a novel method for compensating the surface errors by prebending the workpiece during the milling process. First, a machining error prediction model using finite element method is formulated, which simplifies the contacts between the workpiece and fixture with spring constraints. Milling forces calculated by the micro-unit cutting force model are loaded on the error prediction model to predict the machining error. The error prediction results are substituted into the given formulas to obtain the prebending clamping forces and clamping positions. Consequently, the workpiece is prebent in terms of the calculated clamping forces and positions during the face milling operation to reduce the machining error. Finally, simulation and experimental tests are carried out to validate the correctness and efficiency of the proposed error compensation method. The experimental measured flatness results show that the flatness improves by approximately 30 percent through this error compensation method. The proposed method not only predicts the machining errors in face milling thin plate-shape parts but also reduces the machining errors by taking full advantage of the workpiece prebending caused by fixture, meanwhile, it provides a novel idea and theoretical basis for reducing milling errors and improving the milling accuracy.  相似文献   

19.
A 2-axis hybrid positioning system was developed for precision contouring on micro-milling operation. The system was developed to overcome the micro-positioning limitations of conventional linear stage positioning system on machine tools. A 2-axis flexure hinge type piezoelectric stage was added on a standard milling machine to obtain better machining results. The control method used for the hybrid system was active error compensation type, where errors from linear stages are cancelled by the piezoelectric stage motion. Positioning experiments showed an improvement of machine accuracy which was confirmed by the machining results. A micro-pillar was fabricated for the validation of long-range and high-precision contouring capability. The system was successfully implemented on micro-milling machining to achieve high-precision machining results.  相似文献   

20.
数控机床误差补偿技术及应用载荷误差补偿技术   总被引:1,自引:1,他引:0  
利用有限元法对机床的结构进行受力变形的分析,并用接触理论对导轨的受力变形进行分析计算,提出了计及载荷误差的机床空间误差通用计算模型。用此计算模型在多种载荷下对XH715加工中心的空间误差进行计算,其结果与实测值基本吻合。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号