首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Participatory on-farm trials were conducted to assess effectiveness of Purdue Improved Crop Storage (PICS?) bags for storage of maize in small-scale farmers’ stores in rural villages in eastern Kenya. A PICS bag is a three-layered hermetic bag-system that forms a barrier against the influx of oxygen and the escape of carbon dioxide. Jute, woven polypropylene or PICS bags were filled with shelled maize grain, purchased from the participating farmers, and the three sets of bags kept in the farmers’ own stores for 35 weeks. Oxygen and carbon dioxide levels in the PICS bags were monitored, as well as the temperature and relative humidity in all the bags. Grain moisture, live insect population, grain damage and weight loss were examined at intervals of seven weeks. Oxygen and carbon dioxide composition demonstrated that PICS bags are capable of sustaining good air-barrier properties under farmer storage conditions. Moreover, moisture content of maize stored in PICS bags did not change throughout the storage period whereas the moisture content of maize stored in polypropylene and jute bags decreased significantly in the final 14 weeks. Maize stored in PICS bags remained free from insect infestation and the weight loss due to insect damage was below 1 %. On the contrary, polypropylene and jute bags permitted profuse build-up of insect populations. At 35 weeks, grain damage reached 77.6 % and 82.3 % corresponding to 41.2 % and 48.5 % weight loss in the polypropylene and jute bags respectively. These findings demonstrate that PICS bags are effective in controlling losses caused by storage pests under farmer storage conditions.  相似文献   

2.
Chickpea is an economically important pulse produced by millions of smallholder farmers as a source of food, income and nutrition in Ethiopia. Mold infection and mycotoxin production can potentially lead to significant losses of chickpea during storage. Under laboratory conditions we tested comparative effects of hermetic and traditional storage structures on mold infection, germination and mycotoxin levels of chickpea. Purdue Improved Crop Storage (PICS) bags, Super GrainPro (SGP) bags, and small metal bins were compared to the traditional and popularly used chickpea storage structures such as polypropylene (PP) bags and jute bags over a six-month storage period. Oxygen and carbon dioxide levels, chickpea temperature and moisture, seed infection with molds and percentage germination and mycotoxins levels were determined every two months for six months. In PICS bags, SGP bags and metal bins chickpea temperature and moisture changed very little during storage, whereas in jute and PP bags significant temperature and moisture increases were observed. Oxygen levels in PICS and SGP bags decreased from 20% to 8–10% in six months and carbon dioxide levels increased from 0.4% to 10% in PICS bags and from 0.1% to 17% in SGP bags. In jute and PP bags, oxygen levels were around 20% but carbon dioxide levels increased from 0.05% to 0.1–0.2%, perhaps due to mold activity. Mold infection decreased over time in chickpea stored in PICS bags, SGP bags, and metal bins, and seed germination was high (82–92%). Mold infection increased and seed germination decreased in chickpea stored in jute and PP bags. Increases in levels of aflatoxin, fumonisin, deoxynevalenol, and ochratoxin were observed only for chickpea stored in metal bins, and in jute and PP bags. Our study showed that PICS and SGP bags can effectively arrest mold growth, mycotoxin accumulation and preserve germination of chickpea during six months of storage.  相似文献   

3.
Small hermetic bags (50 and 100 kg capacities) used by smallholder farmers in several African countries have proven to be a low-cost solution for preventing storage losses due to insects. The complexity of postharvest practices and the need for ideal drying conditions, especially in the Sub-Sahara, has led to questions about the efficacy of the hermetic bags for controlling spoilage by fungi and the potential for mycotoxin accumulation. This study compared the effects of environmental temperature and relative humidity at two locations (Indiana and Arkansas) on dry maize (14% moisture content) in woven polypropylene bags and Purdue Improved Crop Storage (PICS) hermetic bags. Temperature and relative humidity data loggers placed in the middle of each bag provided profiles of environmental influences on stored grain at the two locations. The results indicated that the PICS bags prevented moisture penetration over the three-month storage period. In contrast, maize in the woven bags increased in moisture content. For both bag types, no evidence was obtained indicating the spread of Aspergillus flavus from colonized maize to adjacent non-colonized maize. However, other storage fungi did increase during storage. The number of infected kernels did not increase in the PICS bags, but the numbers in the woven bags increased significantly. The warmer environment in Arkansas resulted in significantly higher insect populations in the woven bags than in Indiana. Insects in the PICS bags remained low at both locations. This study demonstrates that the PICS hermetic bags are effective at blocking the effects of external humidity fluctuations as well as the spread of fungi to non-infected kernels.  相似文献   

4.
Storing maize in regions of the world without sufficient drying and storage capacity is challenging due to the potential risk of aflatoxin contamination produced by Aspergillus flavus. This study sought to determine if storage of maize in Purdue Improved Crop Storage (PICS) bags prevents mold growth and aflatoxin accumulation. PICS bags are a three-layer, hermitic bag-system that forms a barrier against the influx of oxygen and the escape of carbon dioxide. Maize conditioned at 12, 15, 18, and 21% grain moisture was inoculated with 50 g of maize kernels infected with fluorescent-marked strain of A. flavus. The grain was stored in either PICS or woven bags at 26 °C, and percent oxygen/carbon dioxide levels, fungal growth, aflatoxin, moisture content, and kernel germination were assessed after 1 and 2 months incubation. Maize stored in woven bags was found to equilibrate with the ambient moisture environment over both storage periods, while PICS bags retained their original moisture levels. Aspergillus flavus growth and aflatoxin accumulation were not observed in maize stored in any PICS bags. No aflatoxin B1 was detected in woven bags containing low-moisture maize (12 and 15%), but detectable levels of aflatoxin were observed in high moisture maize (18 and 21%). The percentage of oxygen and carbon dioxide within PICS bags were dependent on initial grain moisture. Higher carbon dioxide levels were observed in the bags stored for 1 month than for 2 months. High initial moisture and carbon dioxide levels correlated with low kernel germination, with the 18 and 21% treatment groups having no seeds germinate. The results of the study demonstrate that storage of maize in PICS bags is a viable management tool for preventing aflatoxin accumulation in storage.  相似文献   

5.
Smallholder farmers in Pakistan store their seeds and grains in porous polypropylene (woven) and jute bags or in bulk. Seed stored in these containers is susceptible to fluctuating seasonal relative humidity and temperature, which promote mold and insect growth. The present study assessed the performance of Purdue Improved Crop Storage (PICS) bags for maize seed storage during a two-month period. Seed moisture content increased in polypropylene bags while it remained constant in PICS bags. No change in germination was observed in maize seeds stored in PICS bags while in polypropylene bags it was reduced in half when compared to the initial germination. Seed stored in polypropylene bags had higher insect damage with a weight loss of 35% while in PICS bags the infestation was minimal with a weight loss of about 3%. Higher aflatoxin contamination levels were observed in seeds stored in polypropylene than PICS bags. PICS bags are effective at preserving the dryness of maize seed in storage during high relative humidity conditions, which leads to maintenance of seed quality.  相似文献   

6.
Field trials were conducted in small-scale farmers' grain stores in an aflatoxin endemic region to assess the effect of storing maize in triple layer hermetic (PICS™) bags on aflatoxin contamination. Shelled maize grain was purchased from farmers, and filled into PICS bags, woven polypropylene (PP) and jute bags and kept in the farmers' own stores for 35 weeks. Grain moisture content, total mould count and mould incidence levels were examined at onset and after every 7 weeks during the 35 weeks of storage. Aflatoxin contamination was examined at onset, and after 14, 28 and 35 weeks. Ambient temperature and r.h. in the trial site and in all the bags, as well as oxygen and carbon dioxide levels in the PICS bags were also monitored. Initial moisture content (m.c.) of maize varied from farmer to farmer and ranged between 12.4 and 15.0%. The m.c. of maize stored in PICS bags remained significantly higher (P < 0.05) than in PP and jute bags in the last 14 weeks of storage. Total mould count and aflatoxin contamination of maize stored at an initial m.c. < 13% and 13% ≤ m.c.  14% increased significantly in PP and jute bags but not in PICS bags. After 35 weeks, total aflatoxin of maize stored in the PICS bags at an initial m.c. < 13% and 13% ≤ m.c.  14% did not change where as it increased 5–8 folds in the PP and jute bags. Total mould count and aflatoxin contamination of maize stored at an initial m.c. > 14% increased profusely in the three types of bags. Our findings demonstrate that storing maize in PICS bags can prevent accumulation of aflatoxin in rural farmers' stores if grain moisture is <14%.  相似文献   

7.
Coffee (Coffea arabica L.) value is highly dependent on quality. However, due to high humidity in the Central Andean Ranges of Colombia, where much of the country's coffee production resides, Farmers must sell their coffee at harvest in order to mitigate quality loss due to the high moisture. Cooperatives are generally forced to store green coffee until enough volume is collected for export, making it crucial to utilize storage solutions that maintain quality over time. This study examines the efficacy of Purdue Improved Crop Storage (PICS) hermetic bags for storage of green coffee in a simulated small farm setting. PICS bags with the standard three layers (PICS3), PICS bags with two layers (PICS2), and Traditional jute sacks were studied. Quality indicators examined were moisture content, water activity, and cupping score. Analysis of coffee stored at monthly intervals over seven months suggests that both versions of PICS show promise in maintaining moisture content, water activity, and sensory scores. Furthermore, the data suggest that water activity is a better indicator of quality than the currently used moisture content and there is no statistically significant difference in performance between the two PICS treatments.  相似文献   

8.
Seed storage is a major challenge for smallholder farmers in developing nations. Purdue Improved Crop Storage (PICS) bags effectively control the postharvest insect pests of cowpea and other crops. Farmers, encouraged by this success, have begun to expand the use of PICS bags for storing other crops. Little is known about how sorghum seed, one of these important crops, fares when stored under hermetic conditions. Accordingly, we stored sorghum seed for six months in either airtight containers (PICS bags or sealed plastic bottles) or open ones (woven polypropylene bags and open plastic bottles). Overall, sorghum seed stored in PICS bags and in sealed plastic bottles maintained its initial moisture level, germination rate and seed weight. Porous polypropylene bags and open plastic bottles lost moisture over six months. We conclude that sorghum seed can be safely stored in hermetic containers without any loss of quality for extended periods of time.  相似文献   

9.
We assessed the performance of hermetic triple layer Purdue Improved Crop Storage (PICS) bags for protecting Hibiscus sabdariffa grain against storage insects. The major storage pest in the grain was a bruchid, Spermophagus sp.. When we stored infested H. sabdariffa grain for six months in the woven polypropylene bags typically used by farmers, the Spermophagus population increased 33-fold over that initially present. The mean number of emergence holes per 100 seeds increased from 3.3 holes to 35.4 holes during this time period, while grain held for the same length of time in PICS bags experienced no increase in the numbers of holes. Grain weight loss in the woven control bags was 8.6% while no weight loss was observed in the PICS bags. Seed germination rates of grain held in woven bags for six months dropped significantly while germination of grain held in PICS bags did not change from the initial value. PICS bags can be used to safely store Hibiscus grain after harvest to protect against a major insect pest.  相似文献   

10.
Limited information exists on postharvest preservation strategies of stored wheat in Ethiopia. The present study was conducted to evaluate the effectiveness of on-the shelf postharvest storage strategies of stored wheat in the country. The experiment consisted of eight treatments; (1) metal silos, (2) Purdue Improved Crop Storage (PICS) bags, (3) Super GrainPro bags, (4) industrial filter cake dust applied to wheat in polypropylene bag, (5) plastic drums, 6) Triplex applied to wheat in polypropylene bag, 7) Triplex applied to wheat in plastic drum, and 8) polypropylene bag as control. Measurements of oxygen and carbon dioxide levels, live adults of insects per kg, percentage seed damage, and percentage of weight loss, germination and seedling vigor were determined every two months for six months. Results indicated that storage strategies such as PICS and Super GrainPro bags, filter cake, Triplex, and plastic drums led to a significantly lower live insect density compared to the control. Besides, Triplex and filter cake dust or use of hermetic bags also resulted in a significantly lower rate of seed weight loss (%) compared to the control. After six months of storage, means ± SD germination of seed from the polypropylene bag (control) had decreased to 68.0 ± 6.1% while wheat in all other storage strategies exhibited means ± SD germination capacity ranging from 92.0 ± 3.6% to 98.0 ± 1.0%. The present results demonstrate the potential of preserving stored wheat without relying on synthetic insecticides by using hermetic bags, filter cake, and Triplex, with advantages over traditional strategies used by smallholder farmers in Ethiopia. We recommend that hermetic bags, filter cake dust, and Triplex powder should be promoted for use by farmers for the postharvest preservation of their stored wheat.  相似文献   

11.
We conducted an experiment in Niger to evaluate the performance of hermetic triple layer (Purdue Improved Crop Storage- PICS) bags for the preservation of shelled and unshelled groundnut Arachis hypogaea L. Naturally-infested groundnut was stored in PICS bags and woven bags for 6.7 months. After storage, the average oxygen level in the PICS bags fell from 21% to 18% (v/v) and 21%–15% (v/v) for unshelled and shelled groundnut, respectively. Identified pests present in the stored groundnuts were Tribolium castaneum (Herbst), Corcyra cephalonica (Stainton) and Cryptolestes ferrugineus (Stephens). After 6.7 months of storage, in the woven bag, there was a large increase in the pest population accompanied by a weight loss of 8.2% for unshelled groundnuts and 28.7% for shelled groundnut. In PICS bags for both shelled and unshelled groundnuts, by contrast, the density of insect pests did not increase, there was no weight loss, and the germination rate was the same compared to that recorded at the beginning of the experiment. Storing shelled groundnuts in PICS bags is the most cost-effective way as it increases the quantity of grain stored.  相似文献   

12.
The PICS bags, originally developed for cowpea storage, were evaluated for sorghum (Sorghum bicolor) preservation. Batches of 25 kg of sorghum grain were stored in 50 kg PICS or polypropylene (PP) bags under ambient conditions for 12 months and assessed for the presence of insect pests and their damage, seed viability and, oxygen and carbon dioxide variations. The grain was incubated for 35 days to assess whether any insects would emerge. After six months of storage, oxygen levels decreased in the PICS bags compared to polypropylene bags. After 12 months of storage, only two pests, Rhyzopertha dominica and Sitophilus zeamais were found in the PICS bags. However, in PP bags there were additional pests including Tribolium castaneum and Oryzeaphilus mercator and Xylocoris flavipes. Grain weight loss and damage caused by these insects in the PP bags were significantly higher compared to those stored in PICS bags. Germination rates of sorghum grains stored in PP bags decreased significantly while no changes were observed in grains stored in PICS bags when compared to the initial germination. After the incubation post storage period, there was a resurgence of R. dominica in sorghum grains from PICS bags but the population levels were significantly lower compared to polypropylene bags. PICS bags preserved the quality and viability of stored sorghum grains and protected it from key insect pests. The PICS technology is effective for long-term sorghum storage but the potential resurgence of insects in low-oxygen environment calls for further research.  相似文献   

13.
A large-scale study was conducted to assess which of the five most accessible hermetic storage devices on the Kenyan market fulfill the needs of smallholder farmers by positively impacting three major areas of concern: insect infestation, grain quality, and mycotoxin (aflatoxin and fumonisin) contamination. Efficacy of two hermetic silos (plastic and metal) and three hermetic bags (PICS, GrainPro's GrainSafe™, and Super Grain) was directly compared to current maize storage in polypropylene (PP) bags under local environmental conditions using representative storage volumes during a 6-month storage period. Impact of maize grain stored at typical (∼15%) and recommended (<13.5%) moisture levels and potential efficacy losses through frequent interruption of the underlying hermetic principals was assessed. Hermetic storage significantly reduced the increase in aflatoxin compared to PP bags regardless of the moisture level of the grain. An <5% per month aflatoxin increase was achieved by three of the five devices tested: Metal silo, PICS and GrainSafe™ bag. A strong correlation between grain moisture, storage time and aflatoxin development was found in PP bags, but not in any of the hermetic devices. The same result was not obtained for fumonisin development in stored maize. The rate of Fumonisin increase was similar in all tested devices, including the polypropylene bags, and conditions. The periodic opening of the hermetic devices had no significant effect on the efficacy of the hermetic devices but the repeated disturbance of the PP bags led to a significant increase in aflatoxin levels. The maize weevil Sitophilus spp. was most commonly found with a total incidence of 72%. Grain storage under hermetic conditions reduced insect infestation, grain weight loss and discoloration. However, maize storage above recommended moisture levels led to a distinct odor development in all hermetic devices but not the PP bags. Hence, proper grain drying is a prerequisite for maize storage in airtight conditions.  相似文献   

14.
Shire Valley is one of Malawi's most vulnerable areas to climate change (CC). In addition to other impacts, CC is expected to affect storage insect pest status, and the efficacy of grain storage facilities and protectants. On-farm grain storage trials were therefore conducted in Shire Valley to assess the performance of storage facilities and grain protectants against storage insect pests. Eight smallholder farmers hosted the trials in Thyolo and Chikwawa districts. Seven grain storage treatments were evaluated for 32 weeks during two storage seasons: Neem leaf powder (NM), Actellic Super dust (ASD), ZeroFly® bag (ZFB), Purdue Improved Crop Storage bag (PICS), Super Grain Bag (SGB), hermetic metal silo (MS) and untreated grain in a polypropylene bag (PP). Insect pest populations and grain damage increased with storage duration and differed significantly between treatments (p < 0.05). Grain stored in hermetic bags (PICS, SGB) sustained significantly lower (p < 0.05) insect damage and weight loss compared to other treatments across sites and seasons. The hermetic bags also outperformed the other treatments in suppressing insect numbers. However, germination rates of undamaged grains stored in the hermetic storage facilities (MS, PICS, SGB) for 40 weeks were extremely low (<15%) compared to that of undamaged grains from NM treatment (53–58%) and the other treatments (>75%) at both sites. The hermetic MS, ZFB bags, ASD and NM treatments did not effectively protect grain from insect damage. High in-store mean temperature (35.6 °C) and high initial grain moisture content (13.7%) may have negatively affected efficacy of some treatments and seed germination. Tribolium castaneum survival in the MS requires further investigation. The hermetic storage bags (PICS, SGB) can be recommended for long-term maize grain storage (≥32 weeks) by smallholder farmers in Shire Valley and other similar climate change-prone areas in sub-Saharan Africa.  相似文献   

15.
Purdue Improved Crop Storage (PICS) bags are used by farmers in Sub-Saharan Africa for pest management of stored grains and products, including maize. These bags hermetically seal the products, preventing exchange with external moisture and gases. Biological respiration within the bags create an environment that is unsuitable for insect development and fungal growth. This study was conducted to determine the impact of routine opening of the storage bags for maize consumption on fungal growth and aflatoxin contamination. Maize with moisture contents (MC) high enough to support fungal growth (15%, 16%, 18% and 20%) was stored in PICS bags, which were opened weekly and exposed to humid conditions (85% RH) for 30 min over a period of 8 weeks and 24 weeks. Monitors indicated that oxygen defused into the open bags but did not reach equilibrium with the bottom layers of grain during the 30-min exposure period. Fungal colony forming units obtained from the grain surface increased 3-fold (at 15% MC) to 10,000-fold (at 20% MC) after 8 weeks. At both 8 weeks and 24 weeks, aflatoxin was detected in at least one bag at each grain moisture, suggesting that aflatoxin contamination spread from a planted source of A. flavus-colonized grain to non-inoculated grain. The results indicate that repeatedly breaking the hermetic seal of the PICS bags will increase fungal growth and the risk of aflatoxin contamination, especially in maize stored at high moisture content. This work also further demonstrates that maize should be properly dried prior to storage in PICS bags.  相似文献   

16.
There are various types of grain storage bags available to farmers in tropical countries. However, these bags differ in price, quality, and reduced post-harvest losses due to insect pests and mould infestation. This study aimed to compare the effectiveness of three types of storage bags of Purdue Improved Crop Storage (PICS), Grain pro-super (GPS) and woven (WN) bags under assumed small farmer’s storage practices in the sub-tropical climatic conditions. The practice of weekly routine opening of the bags was compared with the recommended practice of keeping the bags closed for at least 3 months. Under laboratory experiment, insect population, moisture content, grain humidity, and temperature were measured at the weekly intervals while under farmer’s setting, moisture content (%) of maize and percentage of insect damage were measured after 3 and 6 months of storage at the farmer’s homestead. Considering the routine weekly opening effect, the PICS bag kept a low grain humidity average (56.6%) compared to the Grain pro-super bag (64.2%) and Woven bag (71.5%). The PICS bag reduced the insect population to an average of zero (0.4) compared to GPS (6.5) and the WN (14.8). Under farmer’s conditions, the mean difference in the percentage of insect damage between the PICS and GPS were insignificant (P > 0.05) at both 3 and 6 months of storage, and the insect damage throughout decreased with time. The results of this study indicate that PICS bag may support positively the practice of routine weekly opening compared to the GPS and WN in the sub-tropical climatic conditions.  相似文献   

17.
Purdue Improved Crop Storage (PICS) bags have been developed and extended as a way to address grain storage issues faced by smallholder farmers in developing nations. A hermetic technology, PICS bags reduce insect damage to grain significantly while maintaining its quality for many months or longer. Farmers with varying and often small volumes of grain at harvest, may still benefit from alternatives to PICS bags for storing their grain. We evaluated plastic bottles, which may be hermetically sealed, for storing maize grain. Clean maize grain was stored for eight months in sealed and unsealed plastic bottles with half of these bottles being infested by maize weevil (Sitophilus zemais, Motschulsky). Oxygen levels in the bottles were monitored throughout the trial and grain was assessed for moisture content, insect damage, germination rate and insect population size when the study was terminated. Sealed bottles preserved grain quality significantly better than unsealed, infested bottles and as well as non-infested unsealed containers. Plastic soda bottles can be used as hermetic containers for safely storing grain.  相似文献   

18.
Trials of the Purdue Improved Crop Storage (PICS) bag technology for the storage of paddy rice, Oryza sativa L., were conducted in Burkina Faso, Ghana and Niger. Paddy rice naturally infested with insects, the most abundant species being Tribolium spp. and Rhizopertha dominica, was sealed in triple layer PICS bags, or in conventional woven polypropylene sacks. At the end of 7–18 months of storage in PICS bags the number of insects did not increase, the weight of 100 seeds did not change, and the proportion of damaged seeds was not different from that present when the paddy was first put into the bags. By contrast, paddy stored in the conventional way in woven polypropylene bags exhibited weight losses ranging from 3 to 8.7%. In Bolgatanga, Ghana, where paddy was stored for 18 months, germination of paddy kept in the PICS bags was comparable to that present at the beginning of the experiment. PICS bags can be used for the safe, low-cost, insecticide free storage of paddy rice.  相似文献   

19.
Experiments were conducted to evaluate the performance of hermetic triple bagging using Purdue Improved Crop Storage (PICS) bags for storage of Bambara groundnut (Vigna subterranea (L.) Verdc.). One set of experiments used grain heavily infested by Callosobruchus maculatus (F.) while a second set began with a low level infestation. Each experiment consisted of V. subterranea grain kept in four replicate 50 kg PICS bags or two replicate woven bags as controls. Two to five days after the beginning of the experiments, oxygen level inside the bags averaged about 21% (v/v) in the controls but decreased significantly in PICS bags, reaching 10% (v/v) with the heavily infested grain but falling only slightly in the lightly infested grain. After 7 months of storage, (i) the number of C. maculatus adults found between and within the grains, (ii) the 100 seed weight, (iii) the number of seed with holes, and (iv) the percentage germination of grain stored in PICS bags did not differ from what had been measured on the day that the experiment was set up. In woven bags, by contrast, there was a massive increase in C. maculatus numbers with means of 309 and 251 adults per 500 g in heavily and lightly infested grain, respectively. Grain weight losses in the woven bag controls ranged from 8 to 19% and the percentage of C. maculatus emergence holes per 100 seed increased from 51 to 135%.  相似文献   

20.
In this study, 2741 randomly selected rural women were interviewed about their cowpea storage practices in 101 villages in Burkina Faso, Niger and Nigeria in late 2010 and early 2011. The overall objective was to determine their cowpea storage practices and identify the most important factors in choosing Purdue Improved Crop Storage (PICS) triple bag storage. About two thirds of women said they used some type of hermetic storage. The hermetic containers included metal drums, plastic jugs, double bags and triple bags. The weighted percentage of women using PICS triple layer bags is 46%. Quantity of cowpea stored by technology showed similar patterns. Overall the percentage of cowpea in hermetic storage was 64%. The study estimated that women stored 50% of their cowpea in PICS bags. The percentage of cowpea in hermetic storage overall and in PICS bags specifically is higher for women than for men in a parallel 2012 ten-country study of mostly male household heads. In PICS villages, the women cite PICS technicians as the most important source of information. In Non-PICS villages, radio was the most important. Most women say that higher income is the major benefit of PICS. The 2009–2010 three country weighted average of the net cash flow from cowpea storage in PICS bags is $10.81/100 kg bag and $39.27 per respondent. Overall, the women indicated that local unavailability was the primary constraint to use of PICS bags. The LOGIT regression analysis shows that the most important factor influencing use of PICS technology is living in a village where PICS demonstrations occurred. The regression shows that radio and the PICS technicians have key roles as information sources. Being able to attend mixed gender meetings was statistically significant only in Burkina Faso where PICS did not organize many women-only PICS activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号