共查询到20条相似文献,搜索用时 15 毫秒
1.
《Journal of Process Control》2014,24(1):57-71
Multiway kernel partial least squares method (MKPLS) has recently been developed for monitoring the operational performance of nonlinear batch or semi-batch processes. It has strong capability to handle batch trajectories and nonlinear process dynamics, which cannot be effectively dealt with by traditional multiway partial least squares (MPLS) technique. However, MKPLS method may not be effective in capturing significant non-Gaussian features of batch processes because only the second-order statistics instead of higher-order statistics are taken into account in the underlying model. On the other hand, multiway kernel independent component analysis (MKICA) has been proposed for nonlinear batch process monitoring and fault detection. Different from MKPLS, MKICA can extract not only nonlinear but also non-Gaussian features through maximizing the higher-order statistic of negentropy instead of second-order statistic of covariance within the high-dimensional kernel space. Nevertheless, MKICA based process monitoring approaches may not be well suited in many batch processes because only process measurement variables are utilized while quality variables are not considered in the multivariate models. In this paper, a novel multiway kernel based quality relevant non-Gaussian latent subspace projection (MKQNGLSP) approach is proposed in order to monitor the operational performance of batch processes with nonlinear and non-Gaussian dynamics by combining measurement and quality variables. First, both process measurement and quality variables are projected onto high-dimensional nonlinear kernel feature spaces, respectively. Then, the multidimensional latent directions within kernel feature subspaces corresponding to measurement and quality variables are concurrently searched for so that the maximized mutual information between the measurement and quality spaces is obtained. The I2 and SPE monitoring indices within the extracted latent subspaces are further defined to capture batch process faults resulting in abnormal product quality. The proposed MKQNGLSP method is applied to a fed-batch penicillin fermentation process and the operational performance monitoring results demonstrate the superiority of the developed method as apposed to the MKPLS based process monitoring approach. 相似文献
2.
In practice, because of complex mechanism processes, such as heating process, volume heterogeneity, and various chemical reaction characteristics, there is a nonlinear relationship among variables in industrial systems. The nonlinearity brings some difficulties to process monitoring. In order to ensure that the process monitoring system can work normally in nonlinear production processes, the nonlinear relationship between variables ought to be considered. In this work, a new fault detection and isolation method based on kernel dictionary learning is presented. In detail, the linearly inseparable data is mapped to a high-dimensional space. Then, a new nonlinear dictionary learning method based on kernel method was proposed to learn the dictionary. After obtaining the dictionary, the control limit can be calculated from the training data according to the kernel density estimation (KDE) method. When new data arrive, they can be represented by the well-learned dictionary, and the kernel reconstruction error can be used as a classifier for process monitoring. As for the fault data, the iterative reconstruction based method is proposed for fault isolation. In order to evaluate the effectiveness of the proposed process monitoring method, some extensive experiments on a numerical simulation, the continuous stirred tank heater (CSTH) process, and a real industrial aluminum electrolysis process are conducted. The proposed method is compared with several state-of-the-art process monitoring methods and the experimental results show that the proposed method can provide satisfactory monitoring results, especially for some small faults, thus it is suitable for process monitoring of nonlinear industrial processes. 相似文献
3.
In this paper, an actuator fault diagnosis scheme is proposed for a class of affine nonlinear systems with both known and unknown inputs. The scheme is based on a novel input/output relation derived from the considered nonlinear systems and the use of the recently developed high-order sliding-mode robust differentiators. The main advantages of the proposed approach are that it does not require a design of nonlinear observer and applies to systems not necessarily detectable. Conditions are provided to characterize the feasibility of fault detection and isolation using the proposed scheme and the maximum number of isolatable actuator faults. The efficacy of the proposed actuator fault diagnosis approach is tested through experiments on a laboratory 3D Crane, and the experimental results show that the proposed actuator fault diagnosis approach is promising and can achieve fault detection and isolation satisfactorily. 相似文献
4.
Transfer learning is an excellent approach to deal with the problem that the target domain label can not be adequately obtained when rolling bearing cross-condition fault detection. A transfer learning fault diagnosis method of multi-scale CNN rolling bearings based on local central moment discrepancy is presented in this research. The method maps bearing vibration data to a shared space by building a shared multi-scale feature extraction structure and fully connected layers. The source domain label and target domain pseudo-label are used to divide the category subspace in the shared space. And then the local central moment discrepancy is used to match source and target domain in the category subspace to realize fault knowledge transfer under different conditions. The experimental findings reveal that multi-scale CNN migration diagnosis based on local central moment discrepancy has superior accuracy and stability in diverse diagnostic tasks when compared to classic transfer learning approaches. 相似文献
5.
Despite the recent success in data-driven machinery fault diagnosis, cross-domain diagnostic tasks still remain challenging where the supervised training data and unsupervised testing data are collected under different operating conditions. In order to address the domain shift problem, minimizing the marginal domain distribution discrepancy is considered in most of the existing studies. While improvements have been achieved, the class-level alignments between domains are generally neglected, resulting in deteriorations in testing performance. This paper proposes an adversarial multi-classifier optimization method for cross-domain fault diagnosis based on deep learning. Through adversarial training, the overfitting phenomena of different classifiers are exploited to achieve class-level domain adaptation effects, facilitating extraction of domain-invariant features and development of cross-domain classifiers. Experiments on three rotating machinery datasets are carried out for validations, and the results suggest the proposed method is promising for cross-domain fault diagnostic tasks. 相似文献
6.
一种基于小波神经网络故障检测方法的仿真研究 总被引:4,自引:1,他引:4
文中提出了一种基于小波神经网络一性观测器的故障检测方法。它是一种把信号分析和模型相结合的故障检测方法,通过小波对信号的去噪和神经的神经网络的自学习功能,来获取系统输入输出的非线性动力学特性,进而实时计算出残差并进行逻辑判疡,可提高故障检测的速度和准确率。对同步交流电机的结构损伤故障进行了仿真,结果表明了该方法是可行的。 相似文献
7.
8.
设计一种PE格式恶意软件混淆对抗样本生成模型。利用深度强化学习算法,实现对恶意软件的自动混淆。通过加入历史帧和LSTM神经网络结构的方法使深度强化学习模型具有记忆性。对比实验表明,该恶意软件变种在基于机器学习的检测模型上的逃逸率高于现有研究,在由918个PE格式恶意软件组成的测试集上达到39.54%的逃逸率。 相似文献
9.
A new fault detection and diagnosis approach is developed in this paper for a class of singular nonlinear systems via the use of adaptive updating rules. Both detection and diagnostic observers are established, where Lyapunov stability theory is used to obtain the required adaptive tuning rules for the estimation of the process faults. This has led to stable observation error systems for both fault detection and diagnosis. A simulated numerical example is included to demonstrate the use of the proposed approach and encouraging results have been obtained. 相似文献
10.
This paper focuses on the design of a unique scheme that simultaneously performs fault isolation and fault tolerant control for a class of uncertain nonlinear systems with faults ranging over a finite cover. The proposed framework relies on a supervisory switching among a family of pre-computed candidate controllers without any additional model or filter. The states are ensured to be bounded during the switching delay, which ends when the correct stabilizing controller has been selected. Simulation results about a flexible joint robotic example illustrate the efficiency of the proposed method. 相似文献
11.
陈自刚;潘鼎;冷涛;朱海华;陈龙;周由胜 《计算机科学》2025,52(2):374-379
深度学习可解释性在发展的同时,也面临着安全性方面的巨大挑战。模型对输入数据的解释结果存在被恶意操纵攻击的风险,此攻击严重限制了可解释性技术的应用场景并阻碍了人类对模型的探索与认知。针对此问题,提出一种使用模型梯度作为相似性约束的解释鲁棒性对抗训练方法。首先,沿解释方向采样生成对抗训练数据;其次,结合训练过程中样本的梯度信息来计算采样数据解释之间的多种相似性指标,用以对模型正则化,平滑模型的曲率;最后,为验证所提出的解释鲁棒性对抗训练方法的有效性,在多个数据集和解释方法上进行验证,实验结果表明,所提方法在防御对抗解释样本上具有显著效果。 相似文献
12.
A new fault detection and diagnosis approach is developed in this paper for a class of singular nonlinear systems via the use of adaptive updating rules. Both detection and diagnostic observers are established, where Lyapunov stability theory is used to obtain the required adaptive tuning rules for the estimation of the process faults. This has led to stable observation error systems for both fault detection and diagnosis. A simulated numerical example is included to demonstrate the use of the proposed approach and encouraging results have been obtained. 相似文献
13.
14.
In this paper, a new nonlinear fault detection technique based on locally linear embedding (LLE) is developed. LLE can efficiently compute the low-dimensional embedding of the data with the local neighborhood structure information preserved. In this method, a data-dependent kernel matrix which can reflect the nonlinear data structure is defined. Based on the kernel matrix, the Nystrrm formula makes the mapping extended to the testing data possible. With the kernel view of the LLE, two monitoring statistics are constructed. Together with the out of sample extensions, LLE is used for nonlinear fault detection. Simulation cases were studied to demonstrate the performance of the proposed method. 相似文献
15.
Traditional manual crack detection has been gradually replaced by unmanned aerial vehicles (UAVs) since automation and intelligence became the inevitable trends in routine bridge maintenance. Deep learning-based real-time crack detection is an important link in this automation process. However, due to the limitations of the field of view and airborne computer performance, it is challenging to balance crack detection accuracy and efficiency at the same time. To address this issue, a novel Generative Adversarial Network (GAN)-based strategy is proposed in this paper. Different from the traditional ways, the GAN-based strategy can introduce the morphological difference between the predictions and the manual labels into training process, further improving the network performance while ensuring detection efficiency. Three lightweight networks with different depths are designed based on the Dense Block to analyze the impact of the proposed method. Novel Fault-Tolerance (FT) indexes are proposed to reflect the morphological differences in predictions. Finally, the effectiveness and robustness of the proposed method are verified by the crack detection of highway bridge piers. Results show that the proposed method can effectively improve the detection scores of UAV-captured images under limited network parameters. 相似文献
16.
万晓丹 《计算机应用与软件》2021,38(1):192-196
在目标检测方法中,通过使用具有不同遮挡程度的数据集进行训练,能够提升目标检测算法对遮挡的不变性,但现实生活中的数据集往往存在长尾效应。因此提出一种基于对抗网络与卷积神经网络的目标检测方法。通过对抗网络在输入数据上进行计算得到不同遮挡程度的样本,使用Faster RCNN算法进行训练提升遮挡不变性,以此提高算法检测精度。实验结果表明,该方法与Faster RCNN相比,在VOC 2007数据集上平均精度提升了2.2个百分点,在VOC 2007和VOC 2012联合数据集上平均精度提升了1.3个百分点。 相似文献
17.
Fault diagnosis of a class of nonlinear uncertain systems with Lipschitz nonlinearities using adaptive estimation 总被引:1,自引:0,他引:1
Xiaodong Zhang Author Vitae 《Automatica》2010,46(2):290-122
This paper presents a fault detection and isolation (FDI) scheme for a class of Lipschitz nonlinear systems with nonlinear and unstructured modeling uncertainty. This significantly extends previous results by considering a more general class of system nonlinearities which are modeled as functions of the system input and partially measurable state variables. A new FDI method is developed using adaptive estimation techniques. The FDI architecture consists of a fault detection estimator and a bank of fault isolation estimators. The fault detectability and isolability conditions, characterizing the class of faults that are detectable and isolable by the proposed scheme, are rigorously established. The fault isolability condition is derived via the so-called fault mismatch functions, which are defined to characterize the mutual difference between pairs of possible faults. A simulation example of a single-link flexible joint robot is used to illustrate the effectiveness of the proposed scheme. 相似文献
18.
Integrating independent component analysis and local outlier factor for plant-wide process monitoring 总被引:2,自引:0,他引:2
We propose a novel process monitoring method integrating independent component analysis (ICA) and local outlier factor (LOF). LOF is a recently developed outlier detection technique which is a density-based outlierness calculation method. In the proposed monitoring scheme, ICA transformation is performed and the control limit of LOF value is obtained based on the normal operating condition (NOC) dataset. Then, at the monitoring phase, the LOF value of current observation is computed at each monitoring time, which determines whether the current process is a fault or not. The comparison experiments are conducted with existing ICA-based monitoring schemes on widely used benchmark processes, a simple multivariate process and the Tennessee Eastman process. The proposed scheme shows the improved accuracy over existing schemes. By adopting LOF, the monitoring statistic is computed regardless of data distribution. Therefore, the proposed scheme integrating ICA and LOF is more suitable for real industry where the monitoring variables are the mixture of Gaussian and non-Gaussian variables, whereas existing ICA-based schemes assume only non-Gaussian distribution. 相似文献
19.
Gildas Besançon 《Automatica》2003,39(6):1095-1102
One approach to the problem of residual generation in a purpose of fault detection is to use an observer. One particular difficulty is to distinguish between faults and disturbances. Various observers have already been inspected in that direction, generally based on exact decoupling w.r.t. unknown disturbances. Here the use of high-gain observer techniques is inspected, with a purpose of attenuation of disturbances rather than exact decoupling: conditions allowing some “robust partial estimation” are first presented, and their possible use in fault detection is then discussed. 相似文献
20.
何元康;马海龙;胡涛;江逸茗 《计算机科学》2025,52(4):369-380
当前,基于深度学习的异常流量检测模型容易遭受流量对抗样本攻击。作为防御对抗攻击的有效方法,对抗训练虽然提升了模型鲁棒性,但也导致了模型检测精度下降。因此,如何有效平衡模型检测性能和鲁棒性是当前学术界研究的热点问题。针对该问题,基于集成学习思想构建多模型对抗防御框架,通过结合主动性特征差分选择和被动性对抗训练,来提升模型的对抗鲁棒性和检测性能。该框架由特征差分选择模块、检测体集成模块和投票裁决模块组成,用于解决单检测模型无法平衡检测性能与鲁棒性、防御滞后的问题。在模型训练方面,设计了基于特征差分选择的训练数据构造方法,通过有差异性地选择和组合流量特征,形成差异化流量样本数据,用于训练多个异构检测模型,以抵御单模型对抗攻击;在模型裁决方面,对多模型检测结果进行裁决输出,基于改进的启发式种群算法优化集成模型裁决策略,在提升检测精度的同时,增大了对抗样本生成的难度。实验效果显示,所提方法的性能相比单个模型对抗训练有较大提升,相较于现有的集成防御方法,其准确率和鲁棒性提升了近10%。 相似文献