首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Direct and differential thermal analyses have been used to determine the liquidus temperatures and isothermals in the aluminum-base corner of the Al-Ti-B system, and with microscopical information and electron microprobe analyses provide results on which is based a provisional phase diagram. The TiB2 liquidus rises very steeply from the aluminum corner of the diagram and is bounded on either side by monovariant reactions which almost coincide with the binary Al-B and Al-Ti liquidus curves. If the Ti:B ratio exceeds 7∶3 wt pct (1∶2 at. pct), TiB2 precipitates on cooling until there occurs a monovariant reaction involving Al3Ti, while at lower Ti:B ratios there occurs a monovariant reaction which involves AlB2. The grain refining action of ternary alloys is discussed with reference to the form of the phase diagram.  相似文献   

2.
The microstructures of Al-3Ti-lCe (wt pct) and Al-5Ti-5Ce alloys melt-spun under controlled He atmosphere have been characterized using analytical electron microscopy. The rapidly solidified microstructures comprise uniform, fine-scale dispersions of intermetallic phase in an aluminum matrix, and particular attention has been given to identification of the dispersed phases. In the Al-3Ti-lCe alloy, the dispersed particles are polycrystalline with a complex twinned substructure and a diamond cubic crystal structure(a o =1.44 ±0.01 nm) and composition consistent with the ternary compound Al20Ti2Ce (Al18Cr2Mg3 structure type, space group Fd3m). In the Al-5Ti-5Ce alloy, there is, in addition to the dispersed ternary phase, a separate uniform array of fine-scale particles of the binary compound Al11Ce3. The majority of such particles have the body-centered orthorhombic structure of the low-temperature polymorph, α-Al11Ce3, but there is evidence to suggest that at least some particles developvia initial formation of the high-temperature body-centered tetragonal phase, β-Al11Ce3. The accumulated evidence suggests that both binary and ternary particles formed as primary phases directly from the melt during rapid solidification, leaving only small concentrations of solute in aluminum matrix solid solution. Both phases are observed to be resistant to coarsening for up to 240 hours at 400 °C. Formerly Research Fellow, Department of Materials Engineering, Monash University.  相似文献   

3.
The microstructures of Al-3Ti-lCe (wt pct) and Al-5Ti-5Ce alloys melt-spun under controlled He atmosphere have been characterized using analytical electron microscopy. The rapidly so- lidified microstructures comprise uniform, fine-scale dispersions of intermetallic phase in an aluminum matrix, and particular attention has been given to identification of the dispersed phases. In the Al-3Ti-lCe alloy, the dispersed particles are polycrystalline with a complex twinned substructure and a diamond cubic crystal structure (α o = 1.44 ± 0.01 nm) and composition consistent with the ternary compound Al20Ti2Ce (Al18Cr2Mg3 structure type, space group Fd3m). In the Al-5Ti-5Ce alloy, there is, in addition to the dispersed ternary phase, a separate uniform array of fine-scale particles of the binary compound Al11Ce3. The majority of such particles have the body-centered orthorhombic structure of the low-temperature polymorph, α-Al11Ce3, but there is evidence to suggest that at least some particles developvia initial formation of the high-temperature body-centered tetragonal phase, β-Al11Ce3. The accumulated evidence sug- gests that both binary and ternary particles formed as primary phases directly from the melt during rapid solidification, leaving only small concentrations of solute in aluminum matrix solid solution. Both phases are observed to be resistant to coarsening for up to 240 hours at 400 °C. Formerly Research Fellow, Department of Materials Engineering,  相似文献   

4.
The microstructures of Al-3Ti-lCe (wt pct) and Al-5Ti-5Ce alloys melt-spun under controlled He atmosphere have been characterized using analytical electron microscopy. The rapidly so- lidified microstructures comprise uniform, fine-scale dispersions of intermetallic phase in an aluminum matrix, and particular attention has been given to identification of the dispersed phases. In the Al-3Ti-lCe alloy, the dispersed particles are polycrystalline with a complex twinned substructure and a diamond cubic crystal structure (α o = 1.44 ± 0.01 nm) and composition consistent with the ternary compound Al20Ti2Ce (Al18Cr2Mg3 structure type, space group Fd3m). In the Al-5Ti-5Ce alloy, there is, in addition to the dispersed ternary phase, a separate uniform array of fine-scale particles of the binary compound Al11Ce3. The majority of such particles have the body-centered orthorhombic structure of the low-temperature polymorph, α-Al11Ce3, but there is evidence to suggest that at least some particles developvia initial formation of the high-temperature body-centered tetragonal phase, β-Al11Ce3. The accumulated evidence sug- gests that both binary and ternary particles formed as primary phases directly from the melt during rapid solidification, leaving only small concentrations of solute in aluminum matrix solid solution. Both phases are observed to be resistant to coarsening for up to 240 hours at 400 °C.  相似文献   

5.
A series of hyperperitectic Al-Ti alloys at 0.35, 0.5, 0.7 and 0.8 wt pct Ti has been frozen at rates varying from less than 1°C/s to in excess of 100°C/s. Cooling-curve analyses, metallographic and microprobe examinations, taken altogether, allow identification both of the nucleants and the solidification modes acting in this important alloy system. Two sets of conclusions are drawn, one in general about low concentration peritectic systems like Al-Ti, and the other about particular interactions in Al-Ti. For example, it is revealed that AlxTi compounds exist; Al3Ti, AlxTi and Al are nucleated by TiC; and AlxTi and TiC are both nucleants for aluminum. Formerly of the Ford Scientific Staff, is now Senior Engineer, Société National d’Etude et de Construction de Moteurs d’Aviation, Gennevilliers, France.  相似文献   

6.
The Al-12 pctSi alloy and aluminum-based composites reinforced with TiB2 and Al3Ti intermetallics exhibit good wear resistance, strength-to-weight ratio, and strength-to-cost ratio when compared to equivalent other commercial Al alloys, which make them good candidates as coating materials. In this study, structural AA 6028 alloy is used as the base material. Four different coating materials were used. The first one is Al-Si alloy that has Si content near eutectic composition. The second, third, and fourth ones are Al-6 pctSi-based reinforced with TiB2 and Al3Ti nano-particles produced by addition of Al-Ti5-B1 master alloy with different weight percentages (1, 2, and 3 pct). The coating treatment was carried out with the aid of GTAW process. The microstructures of the base and coated materials were investigated using optical microscope and scanning electron microscope equipped with EDX analyzer. Microhardness of the base material and the coated layer were evaluated using a microhardness tester. GTAW process results in almost sound coated layer on 6028 aluminum alloy with the used four coating materials. The coating materials of Al-12 pct Si alloy resulted in very fine dendritic Al-Si eutectic structure. The interface between the coated layer and the base metal was very clean. The coated layer was almost free from porosities or other defects. The coating materials of Al-6 pct Si-based mixed with Al-Ti5-B1 master alloy with different percentages (1, 2, and 3 pct), results in coated layer consisted of matrix of fine dendrite eutectic morphology structure inside α-Al grains. Many fine in situ TiAl3 and TiB2 intermetallics were precipitated almost at the grain boundary of α-Al grains. The amounts of these precipitates are increased by increasing the addition of Al-Ti5-B1 master alloy. The surface hardness of the 6028 aluminum alloy base metal was improved with the entire four used surface coating materials. The improvement reached to about 85 pct by the first type of coating material (Al-12 pctSi alloy), while it reached to 77, 83, and 89 pct by the coating materials of Al-6 pct Si-based mixed with Al-Ti5-B1 master alloy with different percentages 1, 2, and 3 pct, respectively.  相似文献   

7.
The deleterious effects of Fe-bearing constituent particles on the fracture toughness of wrought Al alloys have been known. Recent studies have shown that the presence of Fe-bearing constituent particles is also detrimental to the nature and growth of the hard anodic oxide coating formed on such materials. The present study, using a combination of scanning electron microscopy (SEM), transmission electron microscopy (TEM), and electron probe microanalysis (EPMA), was made to examine the influence of the nature of the Fe-bearing particles on the hard anodizing behavior of AA 7075 extrusion products containing varying amounts of Si, Mn, and Fe impurities. It was found that, in the alloy containing 0.25 wt pct Si, 0.27 wt pct Mn, and 0.25 wt pct Fe, the Fe-bearing constituent particles are based on the Al12(FeMn)3Si phase (bcc with a=1.260 nm). These particles survive the hard anodizing treatment, add resistance to the electrical path, causing a rapid rise in the bath voltage with time, and cause a nonuniform growth of the anodic oxide film. In the materials containing 0.05 wt pct Si, 0.04 wt pct Mn, and 0.18 wt pct Fe, on the other hand, the formation of the Al12(FeMn)3Si-based phase is suppressed, and two different Fe-bearing phases, based on Al-Fe-Cu-Mn (simple cubic with a=1.265 nm) and Al7Cu2Fe, respectively, form. Neither the Al-Fe-Cu-Mn-based phase nor the Al7Cu2Fe-based phase survive the hard anodizing treatment, and this results in a steady rise in the bath voltage with time and a relatively uniform growth of the anodic oxide film. Consideration of the size of the Fe-bearing particles reveals that the smaller the particle, the more uniform the growth of the anodic oxide film.  相似文献   

8.
The deleterious effects of Fe-bearing constituent particles on the fracture toughness of wrought A1 alloys have been known. Recent studies have shown that the presence of Fe-bearing, constituent particles is also determental to the nature and growth of the hard anodic oxide coating formed on such materials. The present study, using a combination of scanning electron microscopy (SEM), transmission electron microscopy (TEM), and electron probe microanalysis (EPMA), was made to examine the influence of the nature of the Fe-bearing particles on the hard anodizing behavior of AA 7075 extrusion products containing varying amounts of Si, Mn, and Fe impurities. It was found that, in the alloy containing 0.25 wt pct Si, 0.27 wt pct Mn, and 0.25 wt pct Fe, the Fe-bearing constituent particles are based on the Al12(FeMn)3Si phase (bcc with α=1.260 nm). These particles survive the hard anodizing treatment, add resistance to the electrical path, causing a rapid rise in the bath voltage with time, and cause a nonuniform growth of the anodic oxide film. In the materials containing 0.05 wt pct Si, 0.04 wt pct Mn, and 0.18 wt pct Fe, on the other hand, the formation of the Al12(FeMn)3Si-based phase is suppressed, and two different Fe-bearing phases, based on Al−Fe−Cu−Mn-based (simple cubic with a=1.265 nm) and Al7Cu2Fe, respectively form. Neither the Al−Fe−Cu−Mn-based phase nor the Al7Cu2Fe-based phase survive the hard anodizing treatment, and this results in a steady rise in the bath voltage with time and a relatively uniform growth of the anodic oxide film. Consideration of the size of the Fe-bearing, particles reveals that the smaller the particle, the more uniform the growth of the anodic oxide film.  相似文献   

9.
The Al-Fe and Al-Fe-Si particles formed during DC-casting of an Al-0.25 wt pct Fe-0.13 wt pct Si alloy have been examined. The particles were analyzed by transmission electron microscopy (TEM) and energy dispersive spectroscopy of X-rays (EDS). Crystal faults were studied by high resolution electron microscopy (HREM). Samples for electron microscopy were taken at various positions in the ingot,i.e., with different local cooling rates during solidification. At a cooling rate of 6 to 8 K/s the dominating phases were bcc α-AlFeSi and bct Al m Fe. The space group of bcc α-AlFeSi was verified to be Im3. Superstructure reflections from Al m Fe were caused by faults on {110}-planes. At a cooling rate of 1 K/s the dominating phases were monoclinic Al3Fe and the incommensurate structure Al x Fe. In Al3Fe, stacking faults on {001} were frequently observed. The structure of Al x Fe is probably related to Al6Fe. Some amounts of other phases were detected. For EDS-analysis, extracted particles mounted on holey carbon films were examined. Extracted particles were obtained by dissolving aluminum samples in butanol. Accurate compositions of various Al-Fe-Si phases were determined by EDS-analysis of extracted crystals.  相似文献   

10.
Analytical electron microscopy studies were conducted on a rapidly solidified Al-8.8Fe-3.7Ce alloy and arc melted buttons of aluminum rich Al-Fe-Ce alloys to determine the characteristics of the metastable and equilibrium phases. The rapidly solidified alloy consisted of binary and ternary metastable phases in the as-extruded condition. The binary metastable phase was identified to be Al6Fe, while the ternary metastable phases were identified to be Al10Fe2Ce and Al20Fe5Ce. The Al20Fe5Ce was a decagonal quasicrystal while the Al10Fe2Ce phase was determined to have an orthorhombic crystal structure belonging to space group Cmmm, Cmm2, or C222. Microscopy studies of RS alloy and cast buttons annealed at 700 K established the equilibrium phases to be Al13Fe4, Al4Ce, and an Al13Fe3Ce ternary phase which was first identified in the present study. The crystal structure of the equilibrium ternary phase was determined to be orthorhombic with a Cmcm or Cmc2 space group. The details of X-ray microanalysis and convergent beam electron diffraction analysis are described.  相似文献   

11.
Annealed and wrought AA5052 aluminum alloy was subjected to friction stir processing (FSP) without and with 3 vol pct TiO2 nanoparticles. Microstructural studies by electron backscattered diffraction and transmission electron microscopy showed the formation of an ultra-fine-grained structure with fine distribution of TiO2 nanoparticles in the metal matrix. Nanometric Al3Ti and MgO particles were also observed, revealing in-situ solid-state reactions between Al and Mg with TiO2. Tensile testing at different strain rates determined that FSP decreased the strain rate sensitivity and work hardening of annealed Al-Mg alloy without and with TiO2 nanoparticles, while opposite results were obtained for the wrought alloy. Fractographic studies exhibited that the presence of hard reinforcement particles changed the fracture mode from ductile rupture to ductile-brittle fracture. Notably, the failure mechanism was also altered from shear to tensile rupture as the strain rate increased. Consequently, the fracture surface contained hemispherical equiaxed dimples instead of parabolic ones.  相似文献   

12.
In view of the continuing interest in the solidification characteristics of dilute Al-Ti alloys,1 a recent study2 of the mechanism(s) of grain refinement induced in high purity aluminum by various additions of master alloys containing Ti, B, Cr, Mo, V and Zr is reported. For alloys containing more than 0.2 wt pct Ti, TiAl3 was shown to be commonly a nucleant, in both Al-Ti and Al-Ti-B systems. In addition, it was found that the nature of the master alloys is important in determining the degree of grain refinement a given alloying addition will produce. A “saturation” effect is reported for additions of Ti, and ti-B,i.e., further additions of titanium beyond a given level do not provide any further reduction in grain size.  相似文献   

13.
The Al−Fe and Al−Fe−Si particles formed during DC-casting of an Al-0.25 wt pct Fe-0.13 wt pct Si alloy have been examined. The particles were analyzed by transmission electron microscopy (TEM) and energy dispersive spectroscopy of X-rays (EDS). Crystal faults were studied by high resolution electron microscopy (HREM). Samples for electron microscopy were taken at various positions in the ingot,i.e., with different local cooling rates during solidification. At a cooling rate of 6 to 8 K/s the dominating phases were bcc α-AlFeSi and bct Al m Fe. The space group of bcc α-AlFeSi was verified to be Im3. Superstructure reflections from Al m Fe were caused by faults on {110}-planes. At a cooling rate of 1 K/s the dominating phases were monoclinic Al3Fe and the incommensurate structure Al x Fe. In Al3Fe, stacking faults on {001} were frequently observed. The structure of Al x Fe is probably related to Al6Fe. Some amounts of other phases were detected. For EDS-analysis, extracted particles mounted on holey carbon films were examined. Extracted particles were obtained by dissolving aluminum samples in butanol. Accurate compositions of various Al−Fe−Si phases were determined by EDS-analysis of extracted crystals.  相似文献   

14.
A metallographic study of the porosity and fracture behavior in unidirectionally solidified end chill castings of 319.2 aluminum alloy (Al-6.2 pct Si-3.8 pct Cu-0.5 pct Fe-0.14 pct Mn-0.06 pct Mg-0.073 pct Ti) was carried out using optical microscopy and scanning electron microscopy (SEM) to determine their relationship with the tensile properties. The parameters varied in the production of these castings were the hydrogen (∼0.1 and ∼0.37 mL/100 g Al), modifier (0 and 300 ppm Sr), and grain refiner (0 and 0.02 wt pct Ti) concentrations, as well as the solidification time, which increased with increasing distance from the end chill bottom of the casting, giving dendrite arm spacings (DASs) ranging from ∼15 to ∼95 /im. Image analysis and energy dispersive X-ray (EDX) analysis were employed for quantification of porosity/microstructural constituents and fracture surface analysis (phase identification), respectively. The results showed that the local solidification time(viz. DAS) significantly influences the ductility at low hydrogen levels; at higher levels, however, hydro-gen has a more pronounced effect (porosity related) on the drop in ductility. Porosity is mainly observed in the form of elongated pores along the grain boundaries, with Sr increasing the porosity volume percent and grain refining increasing the probability for pore branching. The beneficial effect of Sr modification, however, improves the alloy ductility. Fracture of the Si, β-Al5FeSi, α- Al15(Fe,Mn)3Si2, and Al2Cu phases takes place within the phase particles rather than at the particle/Al matrix interface. Sensitivity of tensile properties to DAS allows for the use of the latter as an indicator of the expected properties of the alloy.  相似文献   

15.
A highly sensitive thermal analysis technique has been used to study the mechanisms of grain refinement in high-purity aluminum. Additions of Al-Ti-B master alloys were made both below and above the peritectic concentration in reference to the Al-rich corner of the binary Al-Ti phase diagram (0.15 pct Ti in solution). The experiments were conducted at various times after the addition of grain refiner. From the results, except for formation of TiB2, no effect of boron on the Al-rich portion of the binary Al-Ti phase diagram can be observed. With hypoperitectic additions of Al-Ti-B master alloys, TiB2 particles are the most frequent nucleant for aluminum grains. Also, when Al-5Ti-lB additions are made, nucleation frequently occurs above the equilibrium liquidus temperature. From a thermodynamic point of view, this phenomenon can occur only if regions of the melt (which contain bondes and nucleate new grains) have a higher Ti concentration than is present in the bulk of the liquid. A mechanism has been proposed to account for this observation. When hyperperitectic additions of grain refiner were made, a metastable formation of Al solid was often observed to occur at 2 to 5 deg above the equilibrium peritectic temperature. Other researchers have made this observation and proposed that a metastable aluminide phase was formed, even though no X-ray evidence of this phase was found. The experiments reported here show that the metastable nucleation occurs on boride particles when cooling from high temperature, which allow high (metastable) quantities of dissolved Ti to be retained in portions of the melt.  相似文献   

16.
U-Mo dispersion and monolithic fuels are being developed to fulfill the requirements for research reactors, under the Reduced Enrichment for Research and Test Reactors program. In dispersion fuels, particles of U-Mo alloys are embedded in the Al-alloy matrix, while in monolithic fuels, U-Mo monoliths are roll bonded to the Al-alloy matrix. In this study, interdiffusion and microstructural development in the solid-to-solid diffusion couples, namely, U-15.7 at. pct Mo (7 wt pct Mo) vs pure Al, U-21.6 at. pct Mo (10 wt pct Mo) vs pure Al, and U-25.3 at. pct Mo (12 wt pct Mo) vs pure Al, annealed at 873 K (600 °C) for 24 hours, were examined in detail. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), and electron probe microanalysis (EPMA) were employed to examine the development of a very fine multiphase interaction layer with an approximately constant average composition of 80 at. pct Al. Extensive TEM was carried out to identify the constituent phases across the interaction layer based on selected area electron diffraction and convergent beam electron diffraction (CBED). The cubic-UAl3, orthorhombic-UAl4, hexagonal-U6Mo4Al43, and cubic-UMo2Al20 phases were identified within the interaction layer that included two- and three-phase layers. Residual stress from large differences in molar volume, evidenced by vertical cracks within the interaction layer, high Al mobility, Mo supersaturation, and partitioning toward equilibrium in the interdiffusion zone were employed to describe the complex microstructure and phase constituents observed. A mechanism by compositional modification of the Al alloy is explored to mitigate the development of the U6Mo4Al43 phase, which exhibits poor irradiation behavior that includes void formation and swelling.  相似文献   

17.
Grain refinement in aluminum alloyed with titanium and boron   总被引:3,自引:0,他引:3  
The aluminum corner of the ternary Al-B-Ti diagram was explored. A eutectic: Liq — Al + TiAl3 + (Al, Ti)B2 was found at approximately 0.05 wt pct Ti, 0.01 wt pct B; 659.5‡C. TiB2 and A1B2 form a continuous series of solid solutions, but no distinct ternary phase was found. The addition of boron to aluminum-titanium alloys expands the field of primary crystallization of TiAl3 toward lower titanium contents and steepens the liquidus. In equilibrium conditions, pronounced grain refinement is found only in alloys in which TiAl3 is primary and nucleates the aluminum solid solution before any other impurity can act. The peritectic reaction facilitates this priority but it is not necessary for grain refinement. Because of the low diffusivity of titanium and boron in aluminum, equilibrium is seldom attained and in commercial practice grain refinement by TiAl3 is found also outside its equilibrium field of primary crystallization.  相似文献   

18.
This study focuses upon the evolution of microstructures during solidification processing of several intermetallic alloys around the Ll2 phase in the Al-rich corner of the Al-Ti-Ni ternary system. The alloys were produced by double induction melting and subsequent homogenization followed by furnace cooling. The microstructure was characterized by means of optical and scanning electron microscopy with energy-dispersive spectroscopy (EDS) analysis and X-ray diffraction. The microstructural evolution in homogenized alloys was dependent on both nickel and titanium content. Very fine precipitates of Al2Ti were observed within the Ll2 phase in alloys containing 62 to 65 at. pct Al and at least 25 at. pct Ti. The Al2Ti precipitates are stable at least up to 1000 °C and undergo complete dissolution at 1200 °C. In alloys containing around 66 at. pct Al and 25 to 31 at. pct Ti, phases such as Al3Ti, Al5Ti2, and Al11Ti5 were observed. A modified room temperature isotherm in the Al-Ti-Ni ternary system is proposed, taking into account the existence of Al2Ti, Al11Ti5, Al5Ti2, and Al3Ti in equilibrium with the Ll2 phase. It seems that at room temperature, the Ll2 phase field for homogenized alloys is extremely small. It will be practically impossible to obtain a single-phase microstructure at room temperature in the Al-Ti-Ni ternary alloys after homogenization at 1000 °C followed by furnace cooling. S. BISWAS, formerly Graduate Student, Department of Mechanical Engineering, University of Waterloo  相似文献   

19.
The rapid solidification of a peritectic alloy is studied. Various 2D and 3D characterization techniques were effectively utilized to investigate the effect of cooling rate on both the phase fractions and the shrinkage porosity. Particles of Al-36 wt pct Ni were produced using a drop tube impulse system. Neutron diffraction and Rietveld analysis were used to quantify the phases formed during solidification. The microstructure of the produced particles was analyzed using SEM and X-ray microtomography. It was found that increasing cooling rate resulted in decreasing the Al3Ni2 to Al3Ni ratio. Also, quantitative analysis of the microtomography images revealed that the volume percent of porosity increased with increasing particle size. The distribution of porosity was found to be significantly different in small and large particles. It was concluded that the extensive growth of Al3Ni2 at lower cooling rates followed by the peritectic reaction made the feeding of the shrinkages more difficult, and as a result, the volume percent of porosity increased. Other findings showed that high cooling rate during solidification would result in the formation of a quasicrystalline phase, known as D-phase, and suppression of the primary Al3Ni2. Also, investigation of the 3D structure of the solidified particles revealed that large particles of Al-36 wt pct Ni contain multiple nucleation sites, while smaller particles contain only one single nucleation site.  相似文献   

20.
As a new microstructure refining method, accumulative continuous extrusion forming (ACEF) cannot only refine metal matrix but also refine the phases that exist in it. In order to detect the refinements of grain and second phase during the process, Al-1Fe (wt pct) alloy was processed by ACEF, and the microstructural evolution was analyzed by electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM). Results revealed that the average grain size of Al-1Fe (wt pct) alloy decreased from 13 to 1.2 μm, and blocky Al3Fe phase with an average length of 300 nm was granulated to Al3Fe particle with an average diameter of 200 nm, after one pass of ACEF. Refinement of grain was attributed to continuous dynamic recrystallization (CDRX), and the granulation of Al3Fe phase included the spheroidization resulting from deformation heat and the fragmentation caused by the coupling effects of strain and thermal effect. The spheroidization worked in almost the entire deformation process, while the fragmentation required strain accumulation. However, fragmentation contributed more than spheroidization. Al3Fe particle stimulated the formation of substructure and retarded the migration of recrystallized grain boundary, but the effect of Al3Fe phase on refinement of grain could only be determined by the contrastive investigation of Al-1Fe (wt pct) alloy and pure Al.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号