共查询到16条相似文献,搜索用时 62 毫秒
1.
Mg-9Al-0.5Zn-0.1Be-XCa合金的组织和力学性能研究 总被引:1,自引:0,他引:1
研究了Be和Ca元素对Mg-9Al-0.5Zn合金显微组织和力学性能的影响。结果表明:在Mg-9Al-0.5Zn镁合金中添加0.1Be导致合金组织粗化和力学性能下降,同时在晶粒内部形成粒状γ相(Mg17Al12)。在此基础上添加Ca可以使合金组织细化,且含量越高,细化效果越明显。Mg-9Al-0.5Zn-0.1Be-0.5Ca合金具有较高的综合力学性能,但是进一步增加Ca含量导致合金常温力学性能下降。由于A12Ca相良好的高温强化作用,因此当Ca含量小于1%时,Mg-9Al-0.5Zn-0.1Be-XCa合金具有较高的高温强度,进一步增加Ca含量会增大合金脆性。 相似文献
2.
Ca对Mg-6Al合金微观组织和力学性能的影响 总被引:1,自引:0,他引:1
通过采用合金制备、组织分析、力学性能测试等手段,研究了Ca的加入对Mg-6Al合金微观组织和力学性能的影响。结果表明,适量Ca的加入能够细化合金组织,随着Ca加入量的增加,β-Mg17Al12相逐渐消失,并沿晶界析出了高熔点的Al2Ca相。同时,Ca的加入使得相形貌从细骨骼状逐渐演变为连续网状。3种工作温度的力学性能检测结果表明,随Ca的加入,试验合金的拉伸性能先增加后降低,且在Ca含量为0.5%、1%时,分别获得最佳室温和高温性能,但Ca的加入降低了整体的合金塑性。 相似文献
3.
研究了Al5TiB、RE对Mg-8Zn-4Al-0.3Mn铸造镁合金显微组织和力学性能的影响.结果表明,Mg-8Zn-4Al-0.3Mn铸造镁合金的显微组织主要由Mg相、φ(Al2Mg5Zn2)相和τ(Mg32(Al,Zn)49)相组成.加入Al5TiB、RE变质剂,合金晶界上三元相的形态由半连续网状改变为颗粒状,三元相的分布逐渐变得弥散而均匀,且可以显著细化合金的铸态组织,晶粒大小由120μm-130μm减少到30μm-50μm.随着Al5TiB、RE变质剂的加入,合金的常温及高温力学性能也有明显的提高. 相似文献
4.
5.
研究了钙的加入对ZA85镁合金显微组织和力学性能的影响.结果表明:当ZA85镁合金中钙质量分数为0.3%~0.9%时,钙元素均固溶于基体中,合金中无含钙相生成;随钙含量增加,力学性能提高,当钙质量分数为0.6%时,铸态合金的显微硬度和室温抗拉强度达到最大值117.5 HV和164 MPa,150℃时的抗拉强度为149.5 MPa;经300℃×24 h均匀化处理后,其150℃时的抗拉强度提高到159.2 MPa;室温拉伸断口主要由解理面组成,呈脆性断裂;高温断口解理面减少,韧窝增大,呈韧性断裂. 相似文献
6.
Mg-1.5Mn-1.5Y-3Sn合金显微组织及力学性能研究 总被引:1,自引:0,他引:1
采用挤压结合固溶时效方法,对铸态Mg-1.5Mn-1.5Y-3Sn合金进行了处理。利用扫描电镜、X射线衍射仪及显微硬度计等,研究该本合金在不同的热处理工艺下的显微组织及力学性能。试验结果表明,在铸态下,本合金的显微组织由α-Mg基体、大量颗粒状的第二相Mg2Sn、少量的针状YMg—Sn相组成。经过挤压和固溶后,微观组织中出现纤维状条纹,获得最佳力学性能的时效时间是66h(〈180℃)。拉伸试验表明,最大延伸率8为7%,抗拉强度约为230MPa。断口分析发现,合金的断裂方式主要为准解理断裂。 相似文献
7.
8.
镁钙合金的显微组织及力学性能 总被引:4,自引:1,他引:4
应用XRD、SEM、TEM以及短时拉伸试验研究了钙对镁合金组织和性能的影响。结果表明:铸态下,含钙镁合金主要由镁基体和晶界处的离异共晶组织(Mg+Mg2Ca)组成;固溶时效后,晶界处的离异共晶组织消失,代之以颗粒状的Mg2Ca相。铸态合金的常温力学性能较差,但固溶时效后其常温力学性能显著提高,并且在高温短时拉伸时仍然能保持较高的强度。随着含钙量的提高,晶界离异共晶量增加,铸态和时效态的室温抗拉强度和伸长率均下降,时效态高温短时抗拉强度增加,但伸长率仍有所下降。 相似文献
9.
Mg-12Gd-3Y-0.5Zr镁合金的显微组织、力学性能及时效析出相 总被引:1,自引:0,他引:1
通过光学显微镜、扫描电子显微镜、透射电镜、X射线衍射仪、高温拉伸试验机等对不同状态下Mg-12Gd-3Y-0.5Zr镁合金的显微组织、高温力学性能及时效析出相进行了分析。结果表明:该合金铸态组织由α-Mg固溶体、Mg5Gd析出相及α-Mg+Mg24Y5共晶体组成;挤压变形后合金的晶粒尺寸明显减小;合金挤压轧制板材在常温及150℃时有较高的抗拉强度,当温度进一步升高时强度下降较快;合金轧制板材时效析出相在高温(高于250℃)拉伸过程中没有发生相变,但在拉伸过程中会改变分布及形貌,使得变形抗力减小。 相似文献
10.
利用光学显微镜、电子万能试验机、扫描电镜和X射线衍射仪等研究了不同含量的稀土元素钕(质量分数分别为0.3%,0.6%和0.9%)对铸态Mg-5Zn-2Al合金显微组织和力学性能的影响。结果表明:铸态Mg-5Zn-2Al合金主要由-αMg基体相、-τMg32(Al,Zn)49相及AlNd相组成,并且AlNd相随着合金中钕含量的增加而增多;合金的力学性能随着钕含量的增加呈现先上升后下降的变化趋势,当钕含量为0.6%时,合金的抗拉强度达到最大,为204 MPa,合金的伸长率也达到最大值11.125%。 相似文献
11.
Al5TiB对Mg-8Zn-4Al-0.3Mn合金显微组织的影响 总被引:17,自引:0,他引:17
研究了Al5TiB对Mg-8Zn-4Al-0.3Mn铸造镁合金显微组织的影响。结果表明,Mg-8Zn-4Al-0.3Mn铸造镁合金的显微组织主要由Mg相、φ(Al2Mg5Zn2)相、τ(Mg32(Al,Zn)49)相组成。加入0.5%的Al5TiB可显著细化合金的铸态组织,晶粒大小由120~130μm减少到30~40μm。随着Al5TiB加入量的增加,合金的共晶α(Mg)相数量和合金的显微硬度均呈增加趋势。 相似文献
12.
锌对Mg-3%Al合金铸态显微组织和力学性能的影响 总被引:1,自引:0,他引:1
通过光学显微镜、万能力学试验机、X射线衍射仪和电子探针等分析了锌质量分数(1%~8%)对Mg-3%Al合金显微组织和力学性能的影响。结果表明:在Mg-3%Al合金中加入锌后对铸态显微组织和性能均有较大影响;锌质量分数为6%时,其主要组成相为-αMg基体相、-βMg17Al12相和-τMg32(Al,Zn)49三元相;合金的显微组织得到明显细化,各相分布也得到改善;此时其综合力学性能最好,抗拉强度、伸长率和断面收缩率分别达到了215 MPa,11.3%和11.2%。 相似文献
13.
硅对Mg-8Zn-4Al-0.3Mn合金显微组织和性能的影响 总被引:11,自引:0,他引:11
重点研究了硅对Mg-8Zn-4Al-0.3Mn(ZAM84)合金显微组织和性能的影响。在该合金中加入硅后,合金的流动性显著增加。当硅含量达0.36%时,生成的Mg2Si主要呈小块状和小条状,基体组织得到细化;当硅含量大于0.71%时,Mg2Si相主要呈现为比较粗大的块状及汉字状,尤其是当硅含量增加到1.0%左右时,r相的析出受到抑制,而φ相的析出得到促进。由于组织的改善,使得合金的常温和高温(150℃)性能都得到一定程度的提高。 相似文献
14.
稀土钇对镁锌合金组织和性能的影响 总被引:2,自引:0,他引:2
采用X射线衍射和光学显微镜及电子拉伸试验机、维氏硬度计、冲击试验机等分析研究了Mg-3Zn-xY(x=1.5,3,6)合金显微组织对力学性能的影响.结果表明:在基体中和晶界处分布的弥散质点随钇含量的增加而增多;合金中二次相的种类取决于锌、钇质量比,随着钇含量的增加,合金中的二次相依次从I相 W相到W相 H相、H相转变,晶间组织的形态也由细线状向网状转变;合金的抗拉强度、硬度、冲击韧度随着钇含量的增加而提高,塑性则逐渐下降;当钇含量达到6%后合金的综合力学性能下降. 相似文献
15.