首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
To regulate temperature in passive solar houses and green houses, the authors have developed a heat exchanger capable of controlling the heat flow. It has a thermal switch mechanism without mechanically moving parts. It consists of an evaporator, a condenser, a vapor passage pipe, a liquid return pipe having an inverted-U-pipe, and a heater mounted on the inverted-U-pipe. The heat exchanger can transfer, or reduce to zero, heat from the evaporator to the condenser by regulating a slight heater input. The authors have fabricated a model of the heat-flow controllable heat exchanger to examine its thermal switching and heat exchange characteristics, and then compared the obtained results with calculation results. It was clarified that the experimental results agree with the calculation results.  相似文献   

2.
A method for evaluating and predicting the performance of a newly developed plate‐type heat exchanger as an evaporator for water‐refrigerant systems such as chillers has been developed. The main component of the developed heat exchanger consists of plates packed together in a casing with winding tubes connected to both sides of the plates. Refrigerant flows inside the tubes, and water flows in the space between the plates. A herringbone‐like pattern is formed in this space by the cross sections of the winding tubes. The newly developed method estimates evaporation performance of the developed heat exchanger using new empirical correlations. There are correlations for heat transfer and pressure drop in winding‐tube banks on the water side, and correlation for the pressure drop on the refrigerant side. © 2004 Wiley Periodicals, Inc. Heat Trans Asian Res, 33(4): 245–257, 2004; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20009  相似文献   

3.
Effects of buoyancy force on forced laminar convective heat transfer in a uniformly heated horizontal tube may not be neglected at large Re Ra. This 2nd report deals with a theoretical investigation of this problem on a fully developed laminar flow and compares the results with experimental results reported in the 1st report.

In order to back up assumptions made in the following analysis, patterns of secondary flow due to buoyancy are observed in flow visualization experiments. An approximate solution for very large Re Ra is obtained. Nusselt numbers are shown as a function of Re Ra and Pr and are shown to be in fairly good agreement with experimental results on air. Resistance coefficients are also obtained as a function of Re Ra and Pr.  相似文献   


4.
High‐powered satellites need larger heat rejection areas. A deployable radiator is one of the key technologies for a high‐powered satellite bus. A Reservoir Embedded Loop Heat Pipe (RELHP) is a two‐phase heat transfer device that constitutes the deployable radiator. RELHP has an evaporator core which is used as a liquid reservoir to enhance operational reliability. For use on satellites, RELHP is required to have a lifetime greater than 10 years. In the case of conventional heat pipes, it is generally known that noncondensable gas (NCG) has worse heat transport characteristics. On the other hand, the influence of NCG on a RELHP is not still obvious. This paper presents the heat transport characteristics of RELHP for the case of changing NCG volume by experiment and calculation. It was found that NCG increases temperature rise at the evaporator. NCG volume in a RELHP has a great influence on heat transport characteristics due to the reservoir pressure increase caused by NCG. © 2007 Wiley Periodicals, Inc. Heat Trans Asian Res, 36(8): 459–473, 2007; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20181  相似文献   

5.
Fouling of oils on heat exchanger surfaces and pipelines is a common problem in a variety of industrial applications. This is because the oil deposits on the heat transfer surface causes an increase in pressure drop and a decrease in heat exchanger efficiency. In the current work, oil fouling in double pipe heat exchanger was investigated and mitigated using a surface‐active agent for the flow of a dispersion fluid containing different dispersed oil fractions in water. The effect of the dispersed oil fraction (5%vol and 10%vol) and temperature (35°C‐55°C) on the oil fouling rate was studied and discussed under turbulent flow conditions for both hot and cold fluids. Different amounts of alkylbenzene sulfonate as a surfactant were added to reduce the fouling rate under turbulent flow. It was found that the fouling thermal resistance (Rf) increases when the fluid temperature decreases. The higher the dispersed oil fraction, the higher the Rf for all temperatures due to higher oil deposition. Addition of 0.2%vol to 0.5%vol of alkylbenzene sulfonate caused an appreciable reduction in Rf depending on oil fraction and Reynolds number. The mitigation percent was higher for a lower Reynolds number, reaching up to 96%.  相似文献   

6.
In recent years the requirement for reduction of energy consumption has been increasing to solve the problems of global warming and the shortage of petroleum resources. A latent heat recovery type heat exchanger is one of the effective methods of improving thermal efficiency by recovering latent heat. This paper described the heat transfer and pressure loss characteristics of a latent heat recovery type heat exchanger having a wing fin (fin pitch: 4 mm, fin length: 65 mm). These were clarified by measuring the exchange heat quantity, the pressure loss of heat exchanger, and the heat transfer coefficient between outer fin surface and gas. The effects of condensate behavior in the fins on heat transfer and pressure loss characteristics were clarified. Furthermore, the equations for predicting the heat transfer coefficient and pressure loss which are necessary in the design of the heat exchanger were proposed. ©2007 Wiley Periodicals, Inc. Heat Trans Asian Res, 36(4): 215–229, 2007; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20154  相似文献   

7.
The effects of wall material and surface condition on the behavior of an initial boiling bubble of R113 subjected to transient heating were investigated using a heater with a large heat capacity. The behavior of the initial bubble is closely related to premature transition to film boiling of liquids with high wettability. An initial bubble, which is peculiarly shaped like a “straw hat” and leads to premature transition in saturated liquid nitrogen (as reported in a previous paper), also appears on a heated wall with large heat capacity and grows rapidly to cover the entire wall surface. From the observations using a high-speed video camera, the initial bubble is found to be a coalesced bubble into which small bubbles activated in succession along the heated surface are rolled. The growth rate of the initial bubble along the heated surface is not greatly affected by the thermal conductivity of the wall material but is affected markedly by the surface roughness. © 1997 Scripta Technica, Inc. Heat Trans Jpn Res. 25(1): 51–63, 1996  相似文献   

8.
《Applied Energy》2002,71(3):191-203
In this paper, the exergoeconomic theory is applied to a heat exchanger for optimisation purposes. The investigation was referred to a tube-in-tube condenser with the single-phase fluid to be heated flowing in the inner annulus and the two-phase refrigerant flowing in the external annulus. First, the irreversibility due to heat transfer across the stream-to-stream temperature-difference and to frictional pressure-drops is calculated as a function of two design variables: the inner-tube's diameter and the saturation temperature of the refrigerant, on which the heat-exchange area directly depends. Then, a cost function is introduced, defined as the sum of two contributions: the amortisation cost of the condenser under study and the operating cost of the conventional electric-driven heat-pump in which this component will have to work. The latter contribution is directly related to the overall exergy destruction rate in the plant, whereas the amortisation cost mainly depends on the heat-exchange area. So, design optimisation of the device can be performed by minimising this cost function with respect to the selected design variables. The so-called structural approach (Coefficient of Structural Bond) is used in the optimisation, in order to relate the local irreversibility in the condenser to the overall exergy destruction rate in the heat-pump plant. A numerical example is discussed, in which, for a commercial heat-exchanger, the design improvements needed to obtain a cost-optimal configuration are investigated. The results show that significant improvements can be obtained with respect to devices based on conventional values of the design parameters.  相似文献   

9.
A mathematical model of the plate-fin heat exchanger filled with catalyst (CFPFHX) is established to investigate the continuous cooling process coupled with ortho-para hydrogen conversion at 42–70 K. The flow and heat transfer performance and the efficiency of ortho-para hydrogen conversion in the CFPFHX are quantitatively evaluated, and the effects of the structural parameters on the flow and heat transfer coupled with ortho-para hydrogen conversion are analyzed. The results show that the Elovich model is the best existing kinetic models of ortho-para hydrogen conversion with an average relative deviation of 1.8%. The Colburn heat transfer factor (j factor) of the hot side of the CFPFHX is 4.3 times that of the plate-fin heat exchanger (PFHX), and the thermal enhancement factor (TEF) of the hot side is 37.7% of that of the PFHX. Meanwhile, for the CFPFHX, the j factor and the TEF of the hot side under different structural parameters are always about 8–10 times and 68%–93% of that of the cold side respectively. Therefore, the CFPFHX can ensure the flow and heat transfer performance and realize the ortho-para hydrogen continuous conversion. And a fin with the larger flow area (high fin height, wide fin spacing and small fin thickness) has a better flow and heat transfer performance and ortho-para hydrogen conversion. The outlet para-hydrogen ratio youtp-H2 and the mass space velocity vm in the CFPFHX have an approximate linear trend. When mass space velocity vm ≤ 0.6589 kg/(m3·s), the outlet para-hydrogen ratio youtp-H2 can meet the requirement at 42–70 K. Above all, the mechanism of flow and heat transfer coupled with ortho-para hydrogen conversion is revealed for the first time in this study, which can provide a theoretical guidance for the application of the integrated technology in large scale hydrogen liquefaction process.  相似文献   

10.
平行流换热器以其结构紧凑、换热效率高的特点已广泛应用于汽车空调中.简要介绍了汽车空调暖风系统平行流换热器结构,采用计算流体力学(CFD)数值模拟方法对平行流换热器的换热性能进行了分析,比较了空气侧风速和水流量对其换热量和流动阻力的影响.模拟结果表明:在增加相同百分比的情况下,增加空气侧风速比增加水流量对换热器换热量的影响大16%左右,但增加空气侧风速和水流量对换热器换热能力的影响均有限;随着风速的提高,换热量增加率逐渐减小,而空气侧阻力增加率越来越大;随着水流量增加,水侧压降增大非常明显;但两者增加对空气侧出口温度影响均不明显.  相似文献   

11.
12.
Natural convection heat transfer and flow structure in an anisotropic porous medium of square cavity saturated with a Boussinesq fluid has been studied experimentally using a Hele‐Shaw cell. The permeability ratio defined by K = Ky/Kx was set to three different values: 0.4, 1, and 2.5. The convection patterns at the three permeability ratios are visualized at several different Rayleigh numbers by a pH indicator method. When K is 0.25, the visualized flow is mainly in the vertical direction. On the contrary, for K = 4 the convecting flow is in the horizontal direction. The average heat transfer coefficients are also measured, and the corresponding Nusselt numbers are plotted as a function of K. It is found that the corresponding Nusselt numbers are correlated with (KRa)1/2. The experimental results of the flow pattern and heat transfer are in good agreement with those obtained by our previous theory. © 2002 Wiley Periodicals, Inc. Heat Trans Asian Res, 31(6): 463–474, 2002; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.10046  相似文献   

13.
This paper describes the influence of heat flow from high‐temperature refrigerant to low‐temperature refrigerant through fins by thermal conduction. To estimate that influence, we applied a thermal network method that can consider refrigerant quality distribution in the heat exchanger. At the same time, for verifying the estimation, an experiment was performed with a two‐row, two‐pass heat exchanger. Prediction shows that the heat transfer capacity of a condenser is reduced by 3% for a simple two‐row, two‐pass heat exchanger by heat conduction in fins. Comparison of experimental results and predicted results proves that the prediction error was within 1% for condenser capacity. © 2008 Wiley Periodicals, Inc. Heat Trans Asian Res, 37(2): 101–114, 2008; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20184  相似文献   

14.
This paper presents the performance investigation of a shell and helical coil type of Solution Heat Exchanger (SHX) in an ammonia–water vapour absorption system. In an absorption system, SHX is one of the major heat recovery components. The main objective of any heat exchanger design is to achieve minimum heat transfer area required for a given heat duty, as it governs the overall fixed cost content of such a system. The required surface area is decided by the overall heat transfer coefficient. Hence, the heat transfer coefficient (HTC) correlation plays a major role in optimizing the heat exchanger. In this paper, shell and helical coil type of SHX is investigated with more emphasis on the dimensionless correlation of shell side co-efficient, which decides the overall HTC and the size of heat exchanger. From the experimental study, shell side heat transfer coefficient of 510–650 W/m2 K is obtained with the heat exchanger effectiveness of 0.84–0.9 for the tested conditions. A proposed Nusselt number correlation is compared with the experimental results.  相似文献   

15.
Ground-source heat-pump systems provide a new and clean way of heating buildings in the world. They make use of renewable energy stored in the ground, providing one of the most energy-efficient ways of heating buildings. Consumption costs are lowered through the use of free energy from the environment, and the dependence on fossil fuels simultaneously reduces. The aim of this study is to evaluate the performance of vertical ground-source heat-pump system for climatic condition of Erzurum having cold climate in Turkey. For this purpose, an experimental set-up was constructed. The experimental apparatus consisted of a series GHE (ground heat exchanger), a liquid-to-liquid vapor compression heat pump, water circulating pumps and other measurement equipments. In this study, the performance of the system was experimentally investigated. The experimental results were obtained from October to May for the months of heating season of 2008–2009. The experimental results indicate that the average heat-pump COP and overall system’s COPS values are approximately 3.0 and 2.6 in the coldest months of heating season. This study also shows that this system could be used for residential heating in the province of Erzurum being a cold climate region of Turkey.  相似文献   

16.
In the present study, the passive technique of heat transfer in which single pass and double passes are included in a simple U-tube heat exchanger is analyzed. The computational fluid dynamics (CFD)-based parametric analysis is carried out to optimize the parameters affecting the temperature drop and heat transfer achieved from the U-tube heat exchanger. ANSYS Fluentv20 is used for the CFD analysis, and the RNG k-ɛ model and energy equation were considered to define the turbulence and heat transfer phenomena. The Taguchi method is used to formulate the experimental work and analyze the working parameters of the U-tube heat exchanger, such as hot and cold mass flow rate and hoRenew Energyt inlet temperature and cold inlet temperature. For the U-tube heat exchanger, four operating parameters are considered at four different levels in the Taguchi method. The best combination of parameters for achieving a maximum temperature drop is A4B1C2D3, and it is A3B4C1D2 in case of heat transfer. A U-tube single-pass heat exchanger is more effective as compared with other U-tube heat exchangers (zero- and double-pass). Experimental results are provided to validate the suitability of the purpose of the approach.  相似文献   

17.
In this study, a prediction model for condensation heat transfer on a vertical dispersed finned surface was proposed, utilizing the Adamek‐Webb model for condensation heat transfer outside a horizontal finned tube. The prediction model was based on two main experimental observation results. One is the phenomena of the condensate retention at the bottom of each row of the dispersed fin. Another is the offset phenomena of the condensate flow between each row of the dispersed fin. Given the results by the present model, it is predicted that the dependence of the condensation heat transfer coefficient for the dispersed finned surface on the fin pitch is controlled mainly by the dispersed fin length, not the total fin length. On the contrary, for a different fin pitch, the effect to the condensation heat transfer by dispersing the fin is different. From comparison with the experiment results, it is confirmed that the present model was able to predict the condensation with extremely good precision when the fin pitch was larger. Further, when the fin pitch was smaller, the predicted values were higher than the experimental values, but the tendency of the condensation heat transfer with dispersing the fin was nearly predicted. In addition, this condensing model can predict the experimental values with an error of 25% at the maximum in a range of fin pitch 0.6 mm to 1 mm. © 2010 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20288  相似文献   

18.
Abstract

A hybrid numerical method for heat conduction of functionally graded plate with the variable gradient parameters under the H(t) heat source was studied. A weighted residual equation of heat conduction was considered under thermal boundary conditions. In order to calculate temperature distribution of functionally graded plate with variable gradient parameters, the Fourier transform and inverse Fourier transform were applied and the temperature field was obtained under the H(t) heat source. Results show that the influences of the gradient parameters on temperature distribution are dramatic. But with the increase of gradient parameters, the influences of parameters on the temperature distribution are gradually reduced. When the gradient parameters reach a certain critical value, the temperature does not change anymore. By comparing the temperature distribution of the upper and lower surfaces, it is seen that the temperature presents a gentle downward trend with the increase of the heat source distance, while the temperature does not change with the time in farther distance from heat source. Also, the results show that the influence of the heat source has only partial and limited influence on the temperature, which is in accordance with St. Venant’s Principle. The law of the temperature distribution of the lower surface varies with the gradient parameters, which is also discussed, an optimal gradient parameter with the thermal insulation effect of the functionally graded plate is obtained.  相似文献   

19.
20.
An osmotic heat pipe is a top‐heat‐mode heat pipe in which a heat transport medium flowing down is pumped up by means of osmosis in the membrane module. The osmosis is dependent on the concentration difference between the solution at the inside surface and the solvent at the outside surface of the membrane. In addition, convection in the solution inside the membrane affects the concentration of the solution in contact with the inside surface. Thus, the concentration and solution flow rate greatly affect the osmotic pumping rate and the heat transport rate. Therefore, in the present study, the flow in the membrane module was investigated in detail. Using the ratio of the concentration at the inside surface to the mixed mean concentration at the corresponding site, relations for these concentrations and the solution flow rate along the solution channel in the membrane module are derived semitheoretically. These relations can be used to correlate experimental data to within a ±20% error. In addition, a method for increasing the osmotic pumping rate and the heat transport rate of the osmotic heat pipe is proposed. © 2000 Scripta Technica, Heat Trans Asian Res, 29(4): 317–332, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号