首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reaction kinetics of roasting zinc silicate using NaOH was investigated. The orthogonal test was employed to optimize the reaction conditions and the optimized reaction conditions were as follows: molar ratio of NaOH to Zn2SiO4 of 16:1, reaction temperature of 550 °C, and reaction time of 2.5 h. In order to ascertain the phases transformation and reaction processes of zinc oxide and silica, the XRD phase analysis was used to analyze the phases of these specimens roasted at different temperatures. The final phases of the specimen roasted at 600 °C were Na2ZnO2, Na4SiO4, Na2ZnSiO4 and NaOH. The reaction kinetic equation of roasting was determined by the shrinking unreacted core model. Aiming to investigate the reaction mechanism, two control models of reaction rate were applied: chemical reaction at the particle surface and diffusion through the product layer. The results indicated that the diffusion through the product layer model described the reaction process well. The apparent activation energy of the roasting was 19.77 kJ/mol.  相似文献   

2.
以纯试剂为原料进行焙烧试验,采用热力学计算、XRD、SEM-EDS、高温原位分析等手段,研究辉钼矿(MoS2)氧化过程的自烧结行为.结果表明,当焙烧温度由600℃提高至700℃时,辉钼矿团块中物料烧结的面积随之增大,导致脱硫效率降低.烧结层在氧化焙烧的初期快速形成,且常覆盖在团块迎风侧表面.在物料烧结的同时,MoO2和...  相似文献   

3.
依据广泛应用的同族化合物线性递变规律,通过拟合钙、镁化合物生成反应标准吉布斯自由能之间的线性关系,由不同温度条件下Ca3(BO3)2和Ca2B2O5生成反应的标准吉布斯自由能求得相应温度条件下Mg3(BO3)2和Mg2B2O5生成反应的标准吉布斯自由能,进而基于化学反应的标准吉布斯自由能与温度之间的近似线性关系,推导Mg3(BO3)2和Mg2B2O5生成反应标准吉布斯自由能,并通过试验进行了验证与探讨。热力学计算及XRD物相分析结果表明:在还原焙烧过程中,含硼铁精矿中的硼镁石(Mg2[B2O4(OH)](OH))分解为遂安石(Mg2B2O5),遂安石进一步与蛇纹石的分解产物镁橄榄石或顽火辉石反应最终转变成小藤石(Mg3(BO3)2)。  相似文献   

4.
高硅硫化锌精矿氧化焙烧中硅酸锌生成反应的动力学   总被引:4,自引:1,他引:4  
研究了高硅硫化锌精矿氧化焙烧过程中硅酸锌生成反应的动力学。确定了温度、粒度对硅酸锌反应速率的影响,结果指出:硅酸锌生成反应的动力学符合收缩核西式,其过程为固膜扩散控制。测定了各反应条件下的反应速率常数并测得其活化能为406KJ/mol。提出了硅酸锌生成反应的总动力学方程。限制硅酸锌反应速率的有效方法是适当提高精矿粒度和降低焙烧温度至860℃左右。  相似文献   

5.
Baotou RE concentrate was decomposed with concentrated sulfuric acid by controlling the roasting temperature below 500°C.Thermogravimetry-differential thermal analysis(TG-DTA) and chemical analytical methods were used to study the thermal decomposition process and the thermal decomposition effect.The Freeman-Carroll method was applied to analyze the TG-DTA curves.The activation energy, reaction order, and reaction frequency factor at different stages were calculated.The Satava method was used to deduce the reaction mechanism and the relative reaction rate during the thermal decomposition process.  相似文献   

6.
The pre-separation of silica and alumina in aluminosilicates is of great significance for efficiently treating alumina-/silica-bearing minerals for alumina production. In this work, the reaction behavior of kaolinite with ferric oxide during reduction roasting was investigated. The results of thermodynamic analyses and reduction roasting experiments show that ferrous oxide obtained from ferric oxide reduction preferentially reacts with alumina in kaolinite to form hercynite, meanwhile the silica in kaolinite is transformed into quartz solid solution and/or cristobalite solid solution. With increasing roasting temperature, fayalite formed by reaction of surplus ferrous oxide with silica at low temperature is reduced to silica and metallic iron in the presence of sufficient carbon dosage. However, increasing roasting temperature and decreasing Fe2O3/Al2O3 molar ratio favor mullite formation. The complete conversion of kaolinte into free silica and hercynite can be obtained by roasting raw meal of kaolin, ferric oxide and coal powder with Fe2O3/Al2O3/C molar ratio of 1.2:2.0:1.2 at 1373 K for 60 min. This work may facilitate the development of a technique for comprehensively utilizing silica and alumina in aluminosilicates.  相似文献   

7.
A novel process based on chlorination roasting was proposed to simultaneously recover gold and zinc from refractory carbonaceous gold ore by using NaCl as chlorination agent. The effects of roasting temperature, roasting time and NaCl content on the volatilization rates of gold and zinc were investigated. The reaction mechanism and the phase transition process were also analyzed by means of SEM, EDS and XRD. The results demonstrated that under the optimal conditions of NaCl content of 10%, roasting temperature of 800 °C, roasting time of 4 h and gas flow rate of 1 L/min, the rates of gold and zinc were 92% and 92.56%, respectively. During low-temperature chlorination roasting stage, a certain content of sulfur was beneficial to the chlorination reactions of gold and zinc; and during high-temperature chlorination roasting stage, the crystal structure of vanadium-bearing mica was destroyed, and the vanadium-containing oxides were beneficial to the chlorinating volatilization of gold and zinc. Eventually, the chlorinated volatiles of gold and zinc could be recovered by alkaline solution.  相似文献   

8.
针对转炉钒渣钙化焙烧酸浸工艺中存在的钒转浸率低的问题,采用高能球磨对钒渣进行活化预处理,以期强化其提钒效果。采用激光粒度分析仪、BET比表面积测定仪和XRD对活化前后钒渣进行了粒度、比表面积及物相结构分析;采用浸出实验研究了机械活化对钙化焙烧和浸出的影响规律。结果表明:机械活化法增大了钒渣的比表面积,增加了晶格畸变与微观应力,使含钒物相充分解离,由此可改善钒渣钙化焙烧的动力学条件。在浸出20 min条件下,机械活化80 min可将钒浸出率提高10%,最佳焙烧温度降低100℃。  相似文献   

9.
The oxidation of polycrystalline Mo plates and of Mo(100), Mo(110), and Mo(111) single-crystal plates in pure oxygen at 8 × 104 and 2.7 × 103 Pa, at 743–1023 K leads to the growth of orthorhombic MoO3 only, as shown by X-ray diffraction and SEM observations. The stable oxides MoO2 and Mo4O11 were not identified. At each side of the molybdenum plate, the oxide scale is a stacking of MoO3 crystals with their [100] axes oriented normal to the surface of the initial Mo plate. The MoO3 crystals are very thick in the [010] direction, compared with the well-known shape of the MoO3 crystals grown from the vapor phase. Two main factors determine the oriented growth of MoO3 crystals from Mo oxidation. A growth mechanism involving a structural rearrangement of the Mo atoms at the reactional interface and oxygen diffusion through the oxide is proposed.  相似文献   

10.
A technology for suspension magnetization roasting?magnetic separation was proposed to separate iron minerals for recovery. The optimum parameters were as follows: a roasting temperature of 650 °C, a roasting time of 20 min, a CO concentration of 20%, and particles with a size less than 37 μm accounting for 67.14% of the roasted product. The total iron content and iron recovery of the magnetic concentrate were 56.71% and 90.50%, respectively. The phase transformation, magnetic transition, and microstructure evolution were systematically characterized through iron chemical phase analysis, X-ray diffraction, vibrating sample magnetometry, X-ray photoelectron spectroscopy, and transmission electron microscopy. The results demonstrated the transformation of hematite to magnetite, with the iron content in magnetite increasing from 0.41% in the raw ore to 91.47% in the roasted product.  相似文献   

11.
An efficient chlorination roasting process for recovering zinc (Zn) and lead (Pb) from copper smelting slag was proposed. Thermodynamic models were established, illustrating that Zn and Pb in copper smelting slag can be efficiently recycled during the chlorination roasting process. By decreasing the partial pressure of the gaseous products, chlorination was promoted. The Box−Behnken design was applied to assessing the interactive effects of the process variables and optimizing the chlorination roasting process. CaCl2 dosage and roasting temperature and time were used as variables, and metal recovery efficiencies were used as responses. When the roasting temperature was 1172 °C with a CaCl2 addition amount of 30 wt.% and a roasting time of 100 min, the predicted optimal recovery efficiencies of Zn and Pb were 87.85% and 99.26%, respectively, and the results were validated by experiments under the same conditions. The residual Zn- and Pb-containing phases in the roasting slags were ZnFe2O4, Zn2SiO4, and PbS.  相似文献   

12.
To efficiently co-extract Ni and Cu from low-grade nickel-copper sulfide ore, chlorination roasting with NH4Cl followed by a water leaching process was investigated. The results show that 98.4% Ni and 98.5% Cu can be synchronously extracted when the ore particle size is 75-80 μm, the roasting time is 2 h, the mass ratio of NH4Cl to ore is 1.6:1 and the roasting temperature is 550 °C. The evolution behavior of various minerals was elucidated using X-ray diffraction (XRD) coupled with scanning electron microscopy (SEM). The kinetics of the chlorination process based on the differential thermal and thermogravimetric analysis (DTA-TG) data was analyzed by Kissinger method and Flynn-Wall-Ozawa (FWO) method. The chlorination process of low-grade nickel-copper sulfide ore mainly contains two stages: the decomposition of NH4Cl and the chlorination of ore. The maximum apparent activation energies (Ea) at two stages are determined to be 114.8 and 144.6 kJ/mol, respectively. The condensed product of exhaust gas is determined to be ammonium chloride, which can be recycled as the reactant again, making the process economic and clean.  相似文献   

13.
Low-grade high-sulfur bauxite was pretreated via suspension roasting and muffle furnace roasting to remove sulfur and enhance digestion properties. The results show that sulfur can be efficiently removed, and the alumina digestion properties are significantly improved after suspension roasting. Under optimal conditions (t=70 min, T=280 °C, w(CaO)=8% and Nk=245 g/L), the digestion ratios are 94.45% and 92.08% for the suspension-roasted and muffle-roasted ore, respectively, and the apparent activation energies are 63.26 and 64.24 kJ/mol, respectively. Two crystal models were established by Materials Studio based on the XRD patterns. The DFT simulation shows that the existing Al—O bands after suspension roasting can improve alumina digestion. The (104) and (113) planes of Al2O3 after suspension roasting are found to combine with NaOH more easily than those of Al2O3 treated in a muffle furnace.  相似文献   

14.
According to the principle of mass balances and thermodynamic data, 1g [Me]-pH diagrams (Me=Ca, Mo) for Ca-Mo-CO3-H2O system at 25 ℃ were presented with total dissolved carbon-containing ions concentrations of 0.01 mol/L and 1 mol/L, and 1g [Me]-pH diagram for Ca-Mo-H2O system at 25 ℃ was also depicted. The effects of system pH value and total dissolved carbon-containing ions concentrations on the concentrations of the species in Ca-Mo-CO3-H2O system were studied. The results show that the stability region of CaMoO4 reduces significantly in the presence of sodium carbonate. In order to achieve effective leaching of molybdenum from CaMoO4, a certain concentration of sodium carbonate is necessary. High total dissolved carbon-containing ions concentrations and high pH values facilitate to the leaching of CaMoO4 and dissolved sodium carbonate is an efficient leaching agent for decomposing CaMoO4.  相似文献   

15.
系统地研究含钒石煤在悬浮焙烧过程中的热力学、动力学、物相转化和微观结构演变。热力学计算表明,在焙烧过程中,石煤中的碳在氧气充足的情况下燃烧并生成CO2,石煤的主要质量损失区间为600~840℃,热分解反应速率在700℃左右达到峰值。通过Flynn-Wall-Ozawa(FWO)和Kissinger-Akahira-Sunose(KAS)方法验证,石煤的热分解反应由Ginstling-Brounshtein方程描述,表观活化能和指数前因子分别为136.09 k J/mol和12.40 s-1。石煤中的伊利石在650℃时失去羟基,产生脱水伊利石,绢云母结构被逐渐破坏。随着温度的升高,石煤表面变得粗糙且不规则,焙烧温度为850℃时烧结严重。  相似文献   

16.
绘制25℃时W-H2O系、Mo-H2O系以及W-Mo-H2O系中存在的物种随pH值、钨、钼浓度变化的热力学平衡图,并总结其变化规律。热力学分析表明:W-Mo-H2O系中的钨、钼在酸化过程中一般经历从单体离子到杂多酸根离子再到同多酸根离子的转变过程。在pH值为6.5-7.5的范围内,钨转变成聚合离子的程度均高于钼,表明单钨酸根离子的聚合能力强于单钼酸根离子的;而在pH值为3.0-6.5的弱酸性区间内,溶液中形成浓度较高的钨钼杂多酸根离子,这对于钨钼分离极其不利。  相似文献   

17.
混合高温菌浸出黄铜矿及浸出过程中微生物群落的演替   总被引:1,自引:0,他引:1  
研究3株极端嗜热古菌(金属硫叶菌,Sulfolobus metallicus JCM 9184;瑟杜生金属球菌,Metallosphaera sedula JCM 9185和万座酸菌,Acidianus manzaensis YN25)在不同起始pH值和不同温度条件下对黄铜矿的混合浸出,并对浸矿过程中混合菌群落的动态演替进行分析.结果表明:在起始pH 1.5时的铜浸出率明显高于在起始pH 2.5时的铜浸出率,而65 ℃条件下的铜浸出率高于75 ℃时的铜浸出率.利用限制性长度多态性(RFLP)分析65 ℃、起始pH 1.5条件下的微生物群落演替,结果显示:在黄铜矿的浸出前期Sulfolobus metallicus是占据优势的菌种,而到后期Acidianus manzaensis的比例则会上升,并最后取代Sulfolobus metallicus成为优势种.  相似文献   

18.
采用"磁化焙烧-硫脲浸金-磁选-碱浸除杂"的金铁梯级提取法从焙烧氰化尾渣中浸出金,并制取铁精粉,通过物相转化、焙烧过程热力学计算和颗粒群结构分析,揭示铁精粉中杂质形成机理。结果表明:氰化尾渣添加8%焦粉于700℃下磁化焙烧60 min,焙烧样以硫脲法浸金,金浸出率达65.87%;浸金渣经磨矿磁选得到TFe品位为55.01%的初级铁精粉,再于90℃的10%NaOH溶液中碱浸8 h,可得TFe品位为62.22%、回收率为69.80%的合格铁精粉。物相转化和热力学计算表明,磁化焙烧过程中含铁矿物与Si、Ca、Al及重金属等杂质反应,生成铁橄榄石、钙铝榴石和铁钙辉石等新物相,与磁铁矿紧密共生,混入铁精粉中;微细粒磁铁矿存在严重磁团聚,石英等杂质会机械夹杂在磁团聚中,降低铁精粉质量。  相似文献   

19.
The decomposition reactions of monazite and bastnaesite mixed rare earth minerals calcined by CaO-NaCl-CaCl2 were studied by means of TG-DTA and XRD. The results show that the process of the minerals decomposed by CaO involves two steps. The first step occurs in the temperature range of 425-540 ℃, and the main reactions are bastnaesite decomposition, i.e. REOF reacts with CaO to produce RE2O3 and CaF2, and Ce2O3 is oxidized to CeO2. During this step, CaCO3 is formed at about 500 ℃. The second step takes place in the temperature range of 610-700 ℃, and the reactions are monazite decomposition into RE2O3, Ca5F(PO4)3 and Ca3(PO4)2 by CaO and CaF2. In this process, the decomposition ability is improved because CaO from CaCO3 decomposing has high chemical activity. In calcining process, the new formed Ca5F(PO4)3 restrains fluorine that can escape in form of gaseous compound. The decomposition ratio of the mixed rare earth minerals reaches 90.8% at 700 ℃.  相似文献   

20.
The mineralogical phase transformation of a low-grade nickel laterite ore during pre-roasting process and the extraction of silicon during alkaline leaching process were investigated. The results indicate that the reaction activity of nickel ores is effectively improved by pre-roasting at 650 °C for 2 h, because of the transformation of lizardite into magnesium olivine and protoenstatite. When finely ground ore samples (44–61 μm) pre-roasted firstly react with sodium hydroxide solution (60 g/L) with a solid/liquid ratio of 1:5 at 140 °C for 120 min, the extraction of silicon can reach 89.89%, and the other valuable elements of magnesium, iron and nickel are accumulated in the solid residues. The leaching kinetics of nickel laterite ore can be described successfully by the diffusion through the product layer control model. The activation energy is calculated to be 11.63 kJ/mol and the kinetics equation can be expressed as 1–3(1–x)2/3+2(1–x)=13.53×10?2exp[–11.63/(RT)]t.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号