首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Tuna cooking juice is a by‐product from the tuna canning industry. In this study, tuna cooking juice was hydrolysed by proteases extracted from the spleen. Tuna cooking juice showed the highest ACE inhibitory and Ca‐binding activities after hydrolysis for 270 and 180 min, respectively. The hydrolysate was further fractionated by ultrafiltration. The permeate exhibited highest ACE inhibitory and Ca‐binding activities when passed through 1 and 5 kDa cut‐off membranes, respectively. Gel filtration chromatography was used to determine the MW of bioactive peptides that exhibited highest ACE inhibitory and Ca‐binding activities. Those peptides that exhibited highest ACE inhibitory and Ca‐binding activities were the MW range of 238–829 Da and 1355–1880 Da, respectively. These results suggest that the tuna cooking juice and the spleen protease extract are a potential source of bioactive peptides that can be utilised as bioactive ingredients in functional food and nutraceuticals.  相似文献   

2.
Hen egg white lysozyme (HEWL) was hydrolysed with trypsin, papain and a combination of the two. The prepared hydrolysates exhibited ACE inhibitory activity. The hydrolysates were fractionated using ultrafiltration and reverse phase-high performance liquid chromatography (RP-HPLC). Three fractions, which showed the highest ACE inhibitory activities, were purified by RP-HPLC. They were the F7 (from papain-trypsin hydrolysate), F8 (from papain hydrolysate) and F3 (from trypsin hydrolysate) fractions. The IC50 values were 0.03, 0.155 and 0.23 mg/ml for F7, F8 and F3, respectively. The F7 fraction was the most potent ACE inhibitor peptide, and was composed of 12 amino acids, Phe-Glu-Ser-Asn-Phe-Asn-Thr-Gln-Ala-Thr-Asn-Arg (MW: 1428.6 Da). Lineweaver-Burk plots suggest that the F7 peptide acts as an uncompetitive inhibitor against ACE. The kinetic parameters (Km, Vmax, and Ki) for the F7 peptide were measured and compared to the control.  相似文献   

3.
BACKGROUND: Douchi, a traditional fermented soybean food, has recently attracted a great deal of attention owing to its superior physiological activity. In the present study the angiotensin I‐converting enzyme (ACE)‐inhibitory activity of typical douchi procured from various regions of China was analysed. An ACE‐inhibitory peptide derived from the most potent douchi was also isolated and characterised. The pattern of ACE inhibition and resistance to hydrolysis by gastrointestinal proteases of this peptide are described. RESULTS: ACE‐inhibitory activities were detected in all douchi samples, with IC50 values ranging from 0.204 to 2.011 mg mL?1. Among the douchi samples, a Mucor‐type douchi exhibited the most potent ACE‐inhibitory activity (IC50 = 0.204 mg mL?1). A novel ACE‐inhibitory peptide was then isolated from this Mucor‐type douchi using ultrafiltration followed by Sephadex G‐25 column chromatography and reverse phase high‐performance liquid chromatography. The amino acid sequence of the purified peptide was identified by Edman degradation as His‐Leu‐Pro (IC50 = 2.37 µmol L?1). The peptide is a competitive inhibitor and maintained its inhibitory activity even after incubation with some gastrointestinal proteases. CONCLUSION: The present study shows that peptides derived from soybean fermentation during douchi processing could be the main contributor to the ACE‐inhibitory activity observed. Copyright © 2009 Society of Chemical Industry  相似文献   

4.
Angiotensin I‐converting enzyme (ACE) inhibitory peptides have been searched in thornback ray (Raja clavata) muscle hydrolysed with Bacillus subtilis A26 proteases until a hydrolysis degree of 18.35%. The hydrolysate showed an IC50 of 0.83 mg mL?1. To identify peptides responsible for this activity, the extract was eluted through size‐exclusion chromatography and fractions collected. The highest ACE inhibitory activity was found for fractions F2 and F3 which had IC50 of 0.42 and 0.51 mg mL?1, respectively. These fractions were analysed by nano‐liquid chromatography coupled to tandem mass spectrometry (nLC‐MS/MS). A total of 131 and 108 peptide sequences mainly derived from actin, myosin heavy chain and procollagen alpha 1 chain proteins were identified in fractions F2 and F3, respectively. FQPSF and LKYPI showed the best results with an IC50 of 12.56 and 27.07 μM, respectively. These results prove the potential of thornback ray muscle hydrolysate as a source of ACE inhibitory peptides.  相似文献   

5.
Cristina Megías 《LWT》2009,42(1):228-926
The purification of a peptidic fraction with angiotensin converting enzyme (ACE) inhibitory activity from sunflower protein hydrolysates by affinity chromatography was recently described. We now describe that reverse-phase HPLC fractionation of this product yields several fractions with IC50 one order of magnitude higher than those previously purified by reverse-phase HPLC following gel filtration chromatography, showing that affinity chromatography is much more effective than gel filtration chromatography as a first step for purification of ACE inhibitory peptides. The amino acid composition of these fractions is presented, but attempts to determine their amino acid sequence failed, showing that these fractions contained more than one peptide.  相似文献   

6.
BACKGROUND: Bean seeds are an inexpensive source of protein. Anthracnose disease caused by the fungus Colletotrichum lindemuthianum results in serious losses in common bean (Phaseolus vulgaris L.) crops worldwide, affecting any above‐ground plant part, and protein dysfunction, inducing the synthesis of proteins that allow plants to improve their stress tolerance. The aim of this study was to evaluate the use of beans damaged by anthracnose disease as a source of peptides with angiotensin‐converting enzyme (ACE‐I)‐inhibitory activity. RESULTS: Protein concentrates from beans spoiled by anthracnose disease and from regular beans as controls were prepared by alkaline extraction and precipitation at isolelectric pH and hydrolysed using Alcalase 2.4 L. The hydrolysates from spoiled beans had ACE‐I‐inhibitory activity (IC50 0.0191 mg protein mL?1) and were very similar to those from control beans in terms of ACE‐I inhibition, peptide electrophoretic profile and kinetics of hydrolysis. Thus preparation of hydrolysates using beans affected by anthracnose disease would allow for revalorisation of this otherwise wasted product. CONCLUSION: The present results suggest the use of spoiled bean seeds, e.g. anthracnose‐damaged beans, as an alternative for the isolation of ACE‐I‐inhibitory peptides to be further introduced as active ingredients in functional foods. © 2012 Society of Chemical Industry  相似文献   

7.
BACKGROUND: In Tunisia the cuttlefish‐processing industry generates large amounts of solid wastes. These wastes, which may represent 35% of the original material and constitute an important source of proteins, are discarded without any attempt at recovery. This paper describes some functional properties and the angiotensin I‐converting enzyme (ACE)‐inhibitory activity of protein hydrolysates prepared by hydrolysis of cuttlefish (Sepia officinalis) by‐products with crude enzyme extract from Bacillus licheniformis NH1. RESULTS: Cuttlefish by‐product protein hydrolysates (CPHs) with different degrees of hydrolysis (DH 5, 10 and 13.5%) were prepared. All CPHs contained 750–790 g kg?1 proteins. Solubility, emulsifying capacity and water‐holding capacity increased while fat absorption and foaming capacity decreased with increasing DH. All hydrolysates showed greater fat absorption than the water‐soluble fraction from undigested cuttlefish by‐product proteins and casein. CPHs were also analysed for their ACE‐inhibitory activity. CPH3 (DH 13.5%) displayed the highest ACE inhibition (79%), with an IC50 value of 1 mg mL?1. CONCLUSION: Hydrolysis of cuttlefish by‐product proteins with alkaline proteases from B. licheniformis resulted in a product with excellent solubility over a wide pH range and high ACE‐inhibitory activity. This study suggests that CPHs could be utilised to develop functional foods for prevention of hypertension. Copyright © 2010 Society of Chemical Industry  相似文献   

8.
Removal of salts from protein hydrolysate mixture on large scale is very difficult and relatively inefficient. Selecting practical proteinase system and hydrolysis conditions for the production of whey protein isolate (WPI) enzymatic hydrolysates with high angiotensin I‐converting enzyme (ACE) inhibitory activity and low ash content is very useful. The effect of alcalase, neutrase, trypsin and their combined system, i.e. alcalase‐neutrase and trypsin‐neutrase, under two different hydrolysis conditions, i.e. pH‐controlled and pH‐spontaneous drop, on the formation of ACE‐inhibitory peptides and the characteristics of WPI hydrolysate was investigated. Results showed that the ACE‐inhibitory activity of WPI hydrolysate obtained with alcalase was significantly higher than that of its trypsin or neutrase hydrolysate obtained at the same hydrolysis time by both pH‐controlled and pH‐spontaneous drop method (P < 0.05). The WPI hydrolysate obtained after 3 h incubation with alcalase plus 2 h with neutrase under pH‐spontaneous drop condition possessed the highest ACE‐inhibitory activity of 54.30% and the lowest ash content of 2.95%. This is practical as a functional ingredient in the food industry because of its high ACE‐inhibitory capability, commercial availability in large supply of alcalase and neutrase and no needing for additional desalting process.  相似文献   

9.
10.
Fish protein hydrolysates from three freshwater carps, Catla catla, Labeo rohita and Cirrhinus mrigala with different degree of hydrolysis (DH) (5%, 10%, 15% and 20%), were prepared using Flavorzyme enzyme and designated as HCF, HRF and HMF, respectively. The angiotensin I‐converting enzyme (ACE) inhibitory activity of hydrolysates was found to vary from 43 ± 2% to 71 ± 3%. Based on ACE inhibitory activity, HRF with DH‐15% was taken up for further study. The mode of ACE activity inhibition by HRF‐DH 15% was mixed type as revealed by Lineweaver–Burk plot. Sequential digestion of HRF‐DH 15% using pepsin and pancreatin decreased the ACE inhibitory activity from 76% to 63%. Partial purification of HRF‐DH 15% by size exclusion chromatography gave three different fractions designated as F‐1, F‐2 and F‐3 with the molecular mass in the range of 6456–407 Da. Fraction 2 had significantly higher ACE inhibitory activity than the other fractions.  相似文献   

11.
This study aimed to determine the angiotensin converting enzyme‐inhibitory activity and antimicrobial effect of fermented camel milk. Samples were prepared either using Lactobacillus acidophilus and Streptococcus thermophilus or Lactobacillus helveticus and Str. thermophilus and labelled as S1 and S2, respectively. The IC50 values of S1 and S2 samples ranged between 113–200 and 70–133 μg/mL, respectively. The antimicrobial effects of S1 and S2 samples against Bacillus cereus, Salmonella Typhimurium and Staphylococcus aureus were apparent after 12 h of incubation and continued until 15 days of storage, whereas unfermented camel milk exhibited no antimicrobial effects against any of the tested pathogens.  相似文献   

12.
Angiotensin I‐converting enzyme (ACE) inhibitory peptide was isolated from wheat gliadin hydrolysate prepared with acid protease. Consecutive purification methods were used for peptide isolation including ion‐exchange chromatography, size‐exclusion chromatography, and reverse‐phase high‐performance liquid chromatography. The amino acid sequence of this peptide was identified as Ile‐Ala‐Pro, and the ACE inhibitory activity (IC50 value) was 2.7 μM . The hypotensive activity of Ile‐Ala‐Pro on spontaneously hypertensive rats was investigated. This peptide inhibited the hypertensive activity of angiotensin I with intravenous injection, and decreased the blood pressure significantly with intraperitoneal administration.  相似文献   

13.
This study was carried out to examine the proteolytic and angiotensin‐converting enzyme (ACE‐I) activities of probiotic lactic acid bacteria (LAB) as influenced by the type of media, fermentation time, strain type and media supplementation with a proteolytic enzyme (Flavourzyme®). Lactobacillus casei (Lc210), Bifidobacterium animalis ssp12 (Bb12), Lactobacillus delbrueckii subsp. bulgaricus (Lb11842) and Lactobacillus acidophilus (La2410) were grown in 12% of reconstituted skim milk (RSM) or 4% of whey protein concentrates (WPC‐35) with or without combination (0.14%) of Flavourzyme® for 12 h at 37 °C. All the strains were able to grow in both media depending on type of strains used and fermentation time. All the strains showed higher proteolytic activity and produced more antihypersensitive peptides when grown in RSM medium at 12 h, when compared to WPC. Combination with Flavourzyme® also increased LAB growth and proteolytic and ACE‐I activities. Of the four strains used, Bb12 and La2410 outperformed Lc210 and Lb11842. The highest ACE‐I activity and proteolytic activity were found in B. animalis ssp12 combined with Flavourzyme®. Flavourzyme® led to an increase in the production of bioactive peptides with ACE‐I activity during 12 h at 37 °C.  相似文献   

14.
The aim of this study was the identification of potentially bioaccessible ACE‐inhibitory peptides obtained by in vitro gastrointestinal digestion of lentil globulins. ACE‐inhibitory peptides were purified by ion exchange chromatography and gel filtration. After the first step of purification, three peptide fractions with potential antihypertensive properties were obtained and the highest inhibitory activity was determined for the fraction 5 (IC50 = 0.02 mg mL?1). This fraction was separated on Sephadex G10, and six peptide fractions were obtained. The peptides of fraction (5‐F) with the highest potential antihypertensive activity (IC50 = 0.13 mg mL?1) were identified using ESI‐MS/MS. The sequences of peptides were KLRT, TLHGMV and VNRLM. Based on Lineweaver–Burk plots for the fraction 5‐F, the kinetic parameters as Km (1.24 mm ), Vmax (0.012 U min?1), Ki (0.12 mg mL?1) and mode of inhibition were determined.  相似文献   

15.
The aim of the study was to evaluate potential role of a water‐soluble peptide (WSP) extracts derived from buffalo and cow milk Cheddar cheeses with special reference to their antihypertension and antithrombotic activities. The WSP fractions collected at different stages of ripening were tested to assess their degree of proteolysis, their peptides were profiled by RP‐HPLC and in vitro assays for potential bioactivity were conducted. The peptide peak development was observed with slight differences in peaks number, area and height. Both angiotensin‐converting enzyme‐inhibitory and antithrombotic activities increased progressively during ripening. In comparison, the highest activities were observed in peptide extracts obtained from buffalo milk Cheddar cheese, in a dose‐dependent fashion.  相似文献   

16.
BACKGROUND: Angiotensin I‐converting enzyme (ACE) is a dipeptidyl carboxypeptidase associated with the regulation of blood pressure. ACE inhibition results in a lowering of blood pressure. Lactic acid bacteria are known to produce ACE inhibitors during fermentation. Fermented camel milk is the main traditionally fermented dairy food for desert nomads. The beneficial effects of fermented camel milk, which include the prevention of such diseases and conditions as gastroenteritis, tuberculosis and hypertension, have been demonstrated experimentally. RESULTS: ACE inhibitory activity was observed in fermented milk containing Lactobacillus helveticus 130B4, a strain isolated from traditionally fermented camel milk. The peptide that inhibited ACE was purified from the fermented milk by reverse‐phase high‐performance liquid chromatography. The amino acid sequence of the peptide was identified as Ala‐Ile‐Pro‐Pro‐Lys‐Lys‐Asn‐Gln‐Asp (IC50 = 19.9 µmol L?1). The same Ala‐Ile‐Pro‐Pro‐Lys‐Lys‐Asn‐Gln‐Asp sequence was found in κ‐casein (κ‐CN) f107–115 from milk. The inhibitory activity of this nonapeptide (κ‐CN f107–115) was almost preserved even after successive digestion with pepsin, trypsin and chymotrypsin. Furthermore, the inhibitory activity of the purified peptide was completely preserved after heat treatment at 100 °C for 20 min. CONCLUSION: The fermented milk prepared with Lactobacillus helveticus 130B4 contained an ACE inhibitory peptide, κ‐CN 107–115. This fermented milk was expected to have anti‐hypertensive effect after ingestion because the peptide was stable to digestive protease and heat treatment in vitro. Copyright © 2008 Society of Chemical Industry  相似文献   

17.
In this study, grass carp peptides were prepared by enzymatic hydrolysis of grass carp protein using the combination of Alcalase and Neutrase, and angiotensin‐I converting enzyme (ACE) inhibitory activity in vitro, antihypertensive activity in vivo, antioxidant activities, and physicochemical properties of peptides achieved from grass carp protein were characterised after ultrafiltration and desalted processes using mixed ion exchange resins. The purified peptides exhibited strong ACE inhibitory activity (IC50 = 105 μg mL?1), antihypertensive activity with the maximal drop for systolic blood pressure (SBP) of 43 mmHg at a dosage of 100 mg per kg body weight in spontaneously hypertensive rat (SHR), and antioxidant activities indicated by thiobarbituric acid‐reactive substance values in a liposome‐oxidising system, radical‐scavenging activity and chelation of metal ions (Fe2+). The molecular weight of peptides was <1000 Da. Compared to grass carp protein, the peptides separated from enzymatic hydrolysates possessed similar amino acid compositions, but contained higher concentrations of essential amino acids. Moreover, the peptides exhibited excellent solubility at a wide range of pH values from 2 to 10, and lower apparent viscosity than the protein. The peptides separated from enzymatic hydrolysates might be used as a promising ingredient in antihypertensive functional foods and nutraceuticals.  相似文献   

18.
Bioactive peptides from protein hydrolysate of defatted skipjack (Katsuwonus pelamis) roe with 5% degree of hydrolysis (DH) prepared by Alcalase digestion were isolated and characterised. Two active fractions with ABTS radical scavenging activity (973.01–1497.53 μmol TE/mg sample) and chelating activity (0.05–0.07 μmol EE/mg sample) from consecutive purification steps including ultrafiltration, cation exchange column chromatography and reverse phase high performance liquid chromatography (RP-HPLC), were subjected to analysis of amino acid sequence by LC–MS/MS. Seven dominant peptides with 6–11 amino acid residues were identified as DWMKGQ, MLVFAV, MCYPAST, FVSACSVAG, LADGVAAPA, YVNDAATLLPR and DLDLRKDLYAN. These peptides were synthesised and analysed for ACE-inhibitory activity and antioxidative activities. MLVFAV exhibited the highest ACE inhibitory activity (IC50 = 3.07 μM) (p < 0.05) with no antioxidative property, whilst DLDLRKDLYAN showed the highest metal chelating activity, ABTS radical and singlet oxygen scavenging activities. Therefore, peptides prepared from skipjack roe could be further employed as a functional food ingredient.  相似文献   

19.
Three novel peptides, IQW, IRW and LKP, were predicted in our previous study in the thermolysin–pepsin ovotransferrin hydrolysate. The aims of the present study were to purify the peptides, and determine if the predicted peptides purified from the hydrolysate would have the same activity as the synthetic ones. We also determined the stability of the peptides under simulated gastrointestinal condition. IQW, IRW and LKP were then successfully purified from crude ovotransferrin hydrolysate through multi-step chromatographic purification comprising of cation exchange chromatography followed by three-step reverse-phase high performance liquid chromatography (RP-HPLC), and their sequences were analysed by UPLC-MS/MS. Our results showed that their activities were comparable to the synthetic ones. Simulated gastrointestinal incubation showed that IRW was degraded into a dipeptide of IR and a free amino acid of W by pancreatin, LKP was degraded into a dipeptide of KP and a free amino acid of L by mucosal peptidase, while IQW was stable against the digestive enzymes.  相似文献   

20.
In vitro gastrointestinal digestion of pea and whey protein produced high angiotensin I converting enzyme (ACE) inhibitory activity with IC50 values of 0.070 and 0.041 mg protein ml?1 respectively. Ultrafiltration/centrifugation using a membrane with a molecular weight cut‐off of 3000 Da decreased the IC50 value to 0.055 mg protein ml?1 for pea permeate and 0.014 mg protein ml?1 for whey permeate. Further fractionation by reverse phase HPLC gave IC50 values as low as 0.016 mg protein ml?1 for pea and 0.003 mg protein ml?1 for whey. Consequently, these purification steps enriched the ACE inhibitory activity of the pea digest more than four times and that of the whey digest more than 13 times. HPLC profiles after digestion and ultrafiltration indicate that high ACE inhibitory activity is due to short and more hydrophobic peptides. The results also suggest that potent ACE inhibitory peptides were present alongside low active peptides in whey hydrolysate, while all peptides had more or less the same ACE inhibitory activity in pea hydrolysate. In addition, the hydrolysates and enriched fractions will resist in vivo gastrointestinal digestion after oral administration. Hence these ACE inhibitory peptides, as part of functional foods, can play significant roles in the prevention and treatment of hypertension. Copyright © 2004 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号