首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
A spline finite strip capability is described for predicting the buckling stresses and natural frequencies of vibration of prismatic plate structures which may be of composite laminated construction with arbitrary lay-ups. The plate structures may have general boundary conditions. The capability embraces analyses based on the use of first-order shear deformation plate theory and of classical plate theory, and utilizes substructuring procedures which include the use of superstrips. The theoretical development is not detailed since the present paper reports a very direct extension of a theoretical study developed for the analysis of single plates in an earlier paper in this Journal. A considerable range of buckling and vibration applications is documented and comparison of spline finite strip numerical values of buckling stresses and frequencies is made with results generated using the semi-analytical finite strip method and, in some cases, the finite element method. Buckled and vibrational mode shapes are presented for some applications.  相似文献   

2.
This paper is concerned with the derivation of stiffness matrices for the buckling or vibration analysis of any structure consisting of a series of long, thin, flat plates rigidly connected together at their longitudinal edges. Each plate is assumed to be subjected to a basic state of plane stress which is longitudinally invariant, and it is further assumed that the mode of buckling or vibration varies sinusoidally in the longitudinal direction. During buckling or vibration, the edges of any individual plate are subjected to additional systems of forces and moments which are sinusoidally distributed along the edges, and these give rise to sinusoidally varying edge displacements and rotations. Spatial phase differences between the forces and displacements are accounted for by defining them in terms of complex quantities. The sinusoidal edge forces and displacements are split into two uncoupled systems, corresponding to out-of-plane and in-plane displacements, and two stiffness matrices are defined. The out-of-plane stiffness matrix is shown to be in general complex, and Hermitian in form, but the inplane stiffness matrix is real and symmetrical. Explicit expressions are derived for the elements of the matrices, in which all the essential destabilizing effects of the basic stresses, as well as dynamic effects, are included. Finally, it is shown that buckling and vibration phenomena for any structure of this type are closely interrelated.  相似文献   

3.
基于经典梁理论(CBT)研究轴向力作用下纤维增强功能梯度材料(FGM)梁的横向自由振动和临界屈曲载荷问题。首先考虑由混合律模型来表征纤维增强FGM梁的材料属性,其次利用Hamilton原理推导轴向力作用下纤维增强FGM梁横向自由振动和临界屈曲载荷的控制微分方程,并应用微分变换法(DTM)对控制微分方程及边界条件进行变换,计算了纤维增强FGM梁在固定-固定(C-C)、固定-简支(C-S)和简支-简支(S-S)3种边界条件下横向自由振动的无量纲固有频率和无量纲临界屈曲载荷。退化为各向同性梁和FGM梁,并与已有文献结果进行对比,验证了本文方法的有效性。最后讨论在不同边界条件下纤维增强FGM梁的刚度比、纤维体积分数和无量纲压载荷对无量纲固有频率的影响以及各参数对无量纲临界屈曲载荷的影响。  相似文献   

4.

The paper investigates the buckling responses of functionally graded material (FGM) plate subjected to uniform, linear, and non-linear in-plane loads. New nonlinear in-plane load models are proposed based on trigonometric and exponential function. Non-dimensional critical buckling loads are evaluated using non-polynomial based higher order shear deformation theory. Navier’s method, which assures minimum numerical error, is employed to get an accurate explicit solution. The equilibrium conditions are determined utilizing the principle of virtual displacements and material property are graded in the thickness direction using simple Voigt model or exponential law. The present formulation is accurate and efficient in analyzing the behavior of thin, thick and moderately thick FGM plate for buckling analysis. It is found that with the help of displacement-buckling load curve, critical buckling load can be derived and maximum displacement due to the instability of inplane load can be obtained. Also, the randomness in the values of transverse displacement due to inplane load increases as the extent of uniformity of the load on the plate is disturbed. Furthermore, the parametric varying studies are performed to analyse the effect of span-to-thickness ratio, volume fraction exponent, aspect ratio, the shape parameter for non-uniform inplane load, and non-dimensional load parameter on the non-dimensional deflections, stresses, and critical buckling load for FGM plates.

  相似文献   

5.
This paper is concerned with computational problems arising in the application of a previously published matrix analysis of the stability and vibration of structures consisting entirely of a series of thin flat rectangular plates connected together along longitudinal edges. The theory requires that the conditions at the ends of the structure permit a mode which varies sinusoidally in the longitudinal direction, and it is then possible to consider each individual flat plate as one element having four degrees of freedom at each of its two longitudinal edges. The corresponding stiffness matrices are essentially exact within the spirit of thin plate theory. The main computational problem is that of testing whether or not, for a specified wavelength of buckle, any chosen value of the compressive stress is less than or greater than the lowest buckling stress of the structure. This problem is discussed in detail, and a systematic test procedure is derived. Examples of panels with integral unflanged stiffeners, bonded Z-section stiffeners, bonded top-hat stiffeners and corrugated-core sandwich panels are discussed.  相似文献   

6.
The natural vibrations of thick and thin rhombic plates with clamped and simply supported edges are analyzed, using assemblages of nine-node Lagrangian isoparametric quadrilateral C0 continuous finite elements based on a higher-order shear deformable thick plate theory. Here, additional nodal displacement degrees of freedom are derived by retaining higher-order powers of the thickness coordinate in the in-plane displacement fields, which in turn allows for the proper representation of the transverse shear strains of thick plates. Essential rotary inertia terms are derived and included in the present analysis. Nondimensional frequencies are calculated for thick and thin rhombic plates having various combinations of clamped and simply supported edge conditions, and skew angles. The efficacy of using higher-order shear deformable plate finite elements for predicting the in-plane vibration modes of rhombic plates is found to increase as the span-to-thickness ratio decreases and the skew angle increases. The present work shows that higher-order shear deformable finite elements essentially eliminate the transverse shear over-correction of thick rhombic plate frequencies that is produced when finite elements based on the widely used first-order Reissner-Mindlin plate theory are utilized.  相似文献   

7.
In the present paper, buckling loads of rectangular composite plates having nine sets of different boundary conditions and subjected to non-uniform inplane loading are presented considering higher order shear deformation theory (HSDT). As the applied inplane load is non-uniform, the buckling load is evaluated in two steps. In the first step the plane elasticity problem is solved to evaluate the stress distribution within the prebuckling range. Using the above stress distribution the plate buckling equations are derived from the principle of minimum total potential energy. Adopting Galerkin's approximation, the governing partial differential equations are converted into a set of homogeneous linear algebraic equations. The critical buckling load is obtained from the solution of the associated linear eigenvalue problem. The present buckling loads are compared with the published results wherever available. The buckling loads obtained from the present method for plate with various boundary conditions and subjected to non-uniform inplane loading are found to be in excellent agreement with those obtained from commercial software ANSYS. Buckling mode shapes of plate for different boundary conditions with non-uniform inplane loadings are also presented.  相似文献   

8.
Natural frequencies and buckling stresses of cross-ply laminated composite circular cylindrical shells are analyzed by taking into account the effects of higher-order deformations such as transverse shear and normal deformations, and rotatory inertia. By using the method of power series expansion of displacement components, a set of fundamental dynamic equations of a two-dimensional higher-order theory for laminated composite circular cylindrical shells made of elastic and orthotropic materials is derived through Hamilton's principle. Several sets of truncated approximate higher-order theories are applied to solve the vibration and buckling problems of laminated composite circular cylindrical shells subjected to axial stresses. The total number of unknowns does not depend on the number of layers in any multilayered shells. In order to assure the accuracy of the present theory, convergence properties of the first natural frequency and corresponding buckling stress for the fundamental mode r=s=1 are examined in detail. The internal and external works are calculated and compared to prove the numerical accuracy of solutions. Modal transverse shear and normal stresses can be calculated by integrating the three-dimensional equations of equilibrium in the thickness direction, and satisfying the continuity conditions at the interface between layers and stress boundary conditions at the external surfaces. It is noticed that the present global higher-order approximate theories can predict accurately the natural frequencies and buckling stresses of simply supported laminated composite circular cylindrical shells within small number of unknowns.  相似文献   

9.
Natural frequencies and buckling stresses of angle-ply laminated composite plates are analyzed by taking into account the effects of shear deformation, thickness change and rotatory inertia. By using the method of power series expansion of displacement components, a set of fundamental dynamic equations of a two-dimensional higher-order theory for thick rectangular laminates subjected to in-plane stresses is derived through Hamilton's principle. Several sets of truncated approximate theories are applied to solve the eigenvalue problems of a simply supported thick laminated plate. In order to assure the accuracy of the present theory, convergence properties of the fundamental natural frequency are examined in detail. Numerical results are compared with those of the published existing theories. The modal displacement and stress distributions in the thickness direction are obtained and plotted in figures. The present global higher-order approximate theories can predict the natural frequencies, buckling stresses and modal stresses of thick multilayered angle-ply composite laminates accurately within small number of unknowns which is not dependent on the number of layers.  相似文献   

10.
A general analytical model based on shear-deformable beam theory has been developed to study the flexural–torsional coupled vibration and buckling of thin-walled open section composite beams with arbitrary lay-ups. This model accounts for all the structural coupling coming from the material anisotropy. The seven governing differential equations for coupled flexural–torsional–shearing vibration are derived from Hamilton's principle. The resulting coupling is referred to as sixfold coupled vibration. Numerical results are obtained to investigate effects of shear deformation, fiber orientation and axial force on the natural frequencies, corresponding mode shapes as well as load–frequency interaction curves.  相似文献   

11.
Hamilton's variational principle is used for the derivation of equations of transversally isotropic laminated annular plates motion. Nonlinear strain—displacements relations are considered. Linearized vibration and buckling equations are obtained for the annular plates uniformly compressed in the radial direction. The effects of transverse shear and rotational inertia are included. A closed form solution is given for the mode shapes in terms of Bessel, power and trigonometric functions. The eigenvalue equations are derived for natural frequencies and buckling loads of annular and circular plates elastically restrained against rotation along edges. Classical-type plate theory results are obtained then by letting the transverse shear stiffness go to infinity and rotational inertia go to zero. Numerical examples are presented by tables and figures for 2- and 3-layered plates with various geometrical and physical parameters. The transverse shear, rotational inertia and boundary conditions effects are discussed.  相似文献   

12.
The static, dynamic, and buckling behavior of partial interaction composite members is investigated in this paper by taking into account for the influences of rotary inertia and shear deformations. The governing differential equations obtained are very comprehensive, covering and extending the current models for the problems that are based on Euler–Bernoulli beam theory. The analytical solutions of the deflection are then found for the beam with uniformly distributing load under common boundary conditions. The free vibration and buckling behavior are also studied and the analytical expressions of the frequencies of the simply supported beam are obtained explicitly, as are the buckling loads. For other boundary conditions, the eigen-equations are transcendental and thus some numerical examples are presented to demonstrate the effects of the shear deformation and rotary inertia on the resonant frequencies and buckling loads.  相似文献   

13.
The buckling and vibration characteristics of stiffened plates subjected to in-plane partial and concentrated edge loadings are studied using finite element method. The initial stresses are obtained considering the pre-buckling conditions. Buckling loads and vibration frequencies are determined for different plate aspect ratios, edge conditions and different partial non-uniform edge loading cases. The non-uniform loading may also be caused due to the supports on the edges. The analysis presented determines the stresses all over the region for different kinds of loading and edge conditions. In the structural modelling, the plate and the stiffeners are treated as separate elements where the compatibility between these two types of elements is maintained. The vibration characteristics are discussed and the results are compared with those available in the literature. Buckling results show that the stiffened plate is less susceptible to buckling for position of loading near the supported edges and near the position of stiffeners as well.  相似文献   

14.
The critical compressive load in the buckling of circular and annular composite plates reinforced with carbon nanotubes (CNTs) is calculated using finite element method. The developed model is based on the third-order shear deformation theory for moderately thick laminated plates. Effects of CNTs orientation angles and thickness-to-inner radius ratio on the buckling of composite plates are discussed. The results are compared with those obtained by analytical method based on classical plate theory. The finite element method shows lower values for critical buckling load because of the elimination of shear strain in the classical plate theory.  相似文献   

15.
Free vibration characteristics of rectangular plates subjected to inplane loads have been studied using the variational finite difference method. The total energy of free vibration of the system is discretized by replacing the derivative terms by their finite difference equivalents and energy minimization technique is used to obtain a typical eigenvalue problem. Vibration frequencies for various modes for plates subjected to inplane normal loads, pure shear and their combination have been determined for different aspect ratios and edge conditions. It has been observed that the effect of inplane loads on vibration frequencies is more pronounced in the case of plates having similar modes for vibration and buckling.  相似文献   

16.
17.
In the present study a continuum model based on the nonlocal elasticity theory is developed for free vibration analysis of embedded orthotropic thick circular and elliptical nano-plates rested on an elastic foundation. The elastic foundation is considered to behave like a Pasternak type of foundations. Governing equations for vibrating nano-plate are derived according to the Mindlin plate theory in which the effects of shear deformations of nano-plate are also included. The Galerkin method is then employed to obtain the size dependent natural frequencies of nano-plate. The solution procedure considers the entire nano-plate as a single super-continuum element. Effect of nonlocal parameter, lengths of nano-plate, aspect ratio, mode number, material properties, thickness and foundation on circular frequencies are investigated. It is seen that the nonlocal frequencies of the nano-plate are smaller in comparison to those from the classical theory and this is more pronounced for small lengths and higher vibration modes. It is also found that as the aspect ratio increases or the nanoplate becomes more elliptical, the small scale effect on natural frequencies increases. Further, it is observed that the elastic foundation decreases the influence of nonlocal parameter on the results. Since the effect of shear deformations plays an important role in vibration analysis and design of nano-plates, by predicting smaller values for fundamental frequencies, the study of these nano-structures using thick plate theories such as Mindlin plate theory is essential.  相似文献   

18.
The VIPASA computer program accurately treats buckling and vibration of prismatic plate assemblies with a response that varies sinusoidally in the longitudinal direction. In-plane shear loading of component plates produces skewed mode shapes that do not conform to desired support conditions, and this has placed a limitation on the general applicability of VIPASA.This problem is overcome in the present paper by coupling the VIPASA stiffness matrices for different wavelength responses through the method of Lagrangian Multipliers. Supports at arbitrary locations, including support provided by any elastic structure, are included in the theory. Examples illustrate the accuracy and convergence of the method and some of the principal features of the solution. The complete generality and capability of VIPASA have been retained in a computer program VICON that permits constraints and a supporting structure consisting of any number of transverse beam-columns.  相似文献   

19.
针对液压系统压力脉动提出一种矩形薄板振动式压力脉动衰减器结构,利用矩形薄板的各阶模态来达到宽频带压力脉动衰减效果。当液压油的脉动频率接近共振矩形板的某一阶固有频率时,就会激发相应模态振型将该频率成分的脉动能量以最大限度的衰减掉。运用ANSYS Workbench对共振板进行湿模态分析,得到前12阶固有频率与振型。分析结果表明:矩形薄板振动式压力脉动衰减器结构紧凑,各模态频率分布均匀且密集,具有扩宽液压压力脉动频率带效果,适应不同工况工作。  相似文献   

20.
Free vibration of laminated composite plates using two variable refined plate theory is presented in this paper. The theory accounts for parabolic distribution of the transverse shear strains through the plate thickness, and satisfies the zero traction boundary conditions on the surfaces of the plate without using shear correction factors. Equations of motion are derived from the Hamilton's principle. The Navier technique is employed to obtain the closed-form solutions of antisymmetric cross-ply and angle-ply laminates. Numerical results obtained using present theory are compared with three-dimensional elasticity solutions and those computed using the first-order and the other higher-order theories. It can be concluded that the proposed theory is not only accurate but also efficient in predicting the natural frequencies of laminated composite plates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号