首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An experimental investigation of heat transfer around four cylinders closely spaced in a cross-flow of air has been conducted. The cylinders are settled in tandem with equal distances between centers. Their inline pitch ratio is in the range of 1.15 ≤ cd ≤ 3.4 (c = distance between cylinders' centers, d = cylinder diameter); the Reynolds number ranges from 104 to 5 × 104. It is found that there exists a critical Reynolds number Redc at which the heat transfer behavior changes drastically, and is correlated with the in-line pitch ratio by Redc = 1.14 × 105 (cd)?5.84.Variations of characteristic features of the mean and local Nusselt numbers are discussed in relation to the length of the vortex formation region behind the cylinder.  相似文献   

2.
Readily available data on turbulent transfer in plate heat exchangers can be correlated by a heat transfer-energy dissipation analogy:
Nug1(pr, Vi)=C3(fRe3)δ
in which the Nusselt number modified for changes in the Prandtl number and bulk to wall viscosity ratio Vi is related to the friction factor f and the Reynolds number. The exponent e is a weak function of the coefficient C3 which depends on the corrugation geometry.When using chevron or herringbone type patterns the heat transfer depends significantly on the angle between the plate corrugation and the main flow direction. If this angle is π/4 the heat transfer per unit of mechanical energy dissipated is a maximum. Although maximum transfer (with maximum pressure drop) is obtained at π/2, a more practical angle giving high transfer at moderate pressure drops in 2π/5.  相似文献   

3.
4.
A heat transfer correlation for opposing mixed turbulent convection in vertical ducts was obtained utilizing surface renewal theory. The correlation was found to be NuDb = 0.0115ReDh0.8Pr0.51 + [1 − 696Re0.8Dh + 8300GrDbRe2.6Dh(Pr0.5+1)]0.39 The correlation fit data to within 7% over a parameter range of 0.7 < Pr < 7, 1 × 104 < ReDh < 2 × 104, and 1 × 106 < GrDh < 2 × 109. The mean residence time, characterizing the time a clump of fluid resides on the wall, was found to decrease as both GrDbRe2.6Dh(Pr0.5+1) and ReDh increase. This explains the enhanced heat transfer due to buoyancy in opposing mixed turbulent flows. This heat transfer enhancement was also reflected in a decreasing thermal boundary layer thickness with increasing ReDh, GrDh or Pr.  相似文献   

5.
A numerical investigation of the heat transfer from a rectangular fin by combined forced and natural convection is presented. Results are given for buoyancy parameters in the range of 0 ? Gr/Re2 ? 2 and convection - conduction parameters in the range of 0 ? √Re kfL/ksb ? 10. The results are compared with the conventional fin theory and it is found that concerning the fin efficiency, the latter produces acceptable results although it is not strictly correct.  相似文献   

6.
Mixtures of cyanogen and nitrous oxide diluted in argon were shock heated to measure the ratio of the rate constants for
(3)NCO+OCO+NO
and
(4)NCO+MN+CO+M.
The diagnostic was narrow-line absorption of NCO at 440.479 nm using a remotely located cw ring dye laser source. By varying the mole fraction of nitrous oxide in the initial mixture and conducting otherwise identical experiments, we inferred at 2240°K
k3k4=103.54(+0.34, ?0.37).
Utilizing a recent determination of k3 and previous measurements of the ratio k3k4, we recommend over the temperature range 2150 ? T ? 2400°K
k4=1016.8T?0.5exp[?24000/T] cm3/mole/s [×2.3, ×0.4].
An additional mixture of cyanogen, oxygen, hydrogen, and nitrous oxide diluted in argon was shock heated and NCO was monitored to infer the rate constant for
(5)NCO+HCO+NH
and the ratio k6k7:
(6)C2N2+HCN+HCN,
(7)CN+H2HCN+H.
We found near 1490°K
k5=1013.73(+0.42,?0.27) cm3/mole/s,
and
k6k7=0.81(+0.89, ?0.47).
These experiments also led to an estimate of the rate constant for
(8)NCO+H2HNCO+H,
with the result, near 1490°K,
k8?1012.1(+0.4,?0.7) cm3/mole/s.
  相似文献   

7.
A numerical study of the effects of transients and variable properties on single droplet evaporation into an infinite stagnant gas is presented. Sample calculations are reported for octane droplets, initially at 300°K with Ro = 0·1, 0·5, 2·5 × 10?4m, evaporating into air at temperatures and pressures in the ranges 600–2000°K and 1–10 atm, respectively. It is found that initial size Ro is eliminated from the problem on scaling time with respect to R20 and that the evaporative process becomes quasi-steady with (RR0)2 = (R10R0)2?βtR20, as suggested by experiment. Comparisons of solutions using various reference property schemes with those for variable properties show that best agreement obtains using a simple 13 rule wherein properties are evaluated at Tr = Ts + (Te?Ts)3 and m1,r = m1,s + (m1,e? m1,s)3. The effects of temporal storage of mass species, energy, etc. and radial pressure variations in the vapor phase prove to be negligible, the early transient behavior being solely due to sensible heat effects within the droplet and related variations in vapor-side driving forces.  相似文献   

8.
9.
The heat transfer coefficient for nucleate boiling of pure liquids can be determined in many cases by the simple relation h = C · qn. In nucleate boiling of mixtures with widely varying properties, the concentration gradient close to the heating surface strongly affects the heat transfer. As the composition of the mixture is difficult to obtain there, it is tried to develop relations as simple as the one mentioned above. The following form is chosen h = C (Y) · qn(Y) with Y being a function of both, the kind of mixture AK and the concentration w: Y = f (AK, w). Based on experimental values for four different refrigerant-oil mixtures in concentrations of w = 0.005 to 0.20, the following relation renders best results: h = 0.085·[exp. (b1w) + exp.(b2w)], q(0.89-Bw) For each kind of oil, however, different values of b1, b2 and B have to be used; these are given.  相似文献   

10.
In this communication, the stability of the double-diffusive solar ponds has been investigated in the linear approximation. The corresponding linearized system of equations of motion is reduced to a single integro-differential equation using the Green-function technique. In contrast to the conclusions of Veronis that, initially, the instability occurs as an oscillatory mode and at a value of RT (Rayleigh number for temperature) greater than RS the motion becomes steady, the present analysis shows that, initially, as RT increases from zero but remains considerably less than RS, exponentially growing and decaying modes (steady motion) occur first; for a value of RT more than a critical value RTc, the motion becomes oscillatory. This oscillatory motion may, due to the basic non-linear dynamics of the system, even become aperiodic. Further, for RS → ∞, the minimum value of RT for which steady motions can occur tends to K?12·RS, where K = KS/KT where KS and KT are diffusivity coefficients for salt and temperature, respectively; as a contrast, according to Veronis, RTa? σ?1 RS; σ = v/KT, v being the kinematic viscosity.  相似文献   

11.
Effects of suction and injection on self-similar boundary-layer flows at moderately large Reynolds numbers are studied. The general form of normal velocity at the wall is assumed to be vw = R?12 vw1 + R?1vw2 +… In addition to the usual five second-order effects (due to longitudinal curvature, transverse curvature, displacement speed, external vorticity, temperature gradient) an additional sixth effect due to vw2 is linearly separated. Both the cases of the momentum and heat transfer are studied. For heat transfer two cases of prescribed wall temperature and that of insulated wall with full similarity with viscous dissipation considered. Numerical solutions are displayed graphically and critically discussed.  相似文献   

12.
This paper presents an experimental investigation of convective heat transfer in a confined rectangular cavity packed with porous media, on the opposing vertical walls of which different temperatures are imposed. Measurements are made for each of two kinds of solid particles using three kinds of fluids, i.e. water, transformer oil and ethyl alcohol. The present experiments cover a wide range of Rayleigh number Ra1 between 1 and 105, Prandtl number Pr1 between 1 and 200 and geometrical aspect-ratio HW between 5 and 26. The experimental results indicate that Nusselt number Nu1 is correlated by the following relationship: Nu1 = 0.627 Pr10.130 (HW)?0.527 Ra10.463  相似文献   

13.
For the range 3 × 103 ≤ Grdi ≤ 108 and 1·3 ≤ r0ri ≤ 7·5, it is suggested that Nuδ = 0·181(r0ri) ? 0·215Grdi0·25 for the steady-state rate of heat transfer outwards by combined laminar, free convection and conduction through the atmospheric pressure air contained within horizontal concentric annuli. This simple correlation, evolved from an analysis of published, as well as new, experimental information, will enable designers to predict the combined convective/conductive resistance provided by the contained air for the range of concentric pipes likely to be encountered in practice.An optimal eccentricity of 0·24 (the inner cylinder being moved vertically upwards relative to the outer cylinder from the concentric position) corresponds to the maximum combined convective/conductive resistance configuration. For the systems tested in the temperature range 18°C ≤ T ≤ 150°C, this optimal eccentricity is not significantly affected by changes in the surface emissivities.  相似文献   

14.
15.
The classical solutions to the one dimensional transient heat flow situation are examined and criteria are set up to map stages in the cooling process in a parallel sided slab following step changes at the exposed surface. The temperature θ, at a point within the slab, undergoes a perceptible deviation from the undisturbed state, and from the state determined by cooling from the nearer side alone, at times ζ0 (the Fourier number) found from a relation of type d3θ03 = 0 in the appropriate progressive wave solution. Cooling becomes virtually exponential at a time ζ0 when d2θ02 for the first term in the standing wave solution equals the sum of the higher terms. The response times are conveniently expressed in terms of ζ0, ζ0B or ζ0B2 (B is the Biot number) according to the model involved. Examples are given illustrating these results in a building context.  相似文献   

16.
The variation of water-vapour permeability k1 with changes in bulk density has been measured for various fibrous insulants and the results compared with those obtained using the British Standard dry-cup and wet-cup methods. An exponential relationship of the form k1exp(1Vν) was obtained, where Vν is the volume voidage.  相似文献   

17.
With the aid of the non-linear shell buckling computer program BOSOR 4, the internal pressures at which elastic circumferential buckling (or wrinkling) take place in thin torispherical shells have been calculated. The maximum equivalent (or effective) stresses in the shells in the axisymmetric pre-buckled state were also obtained; from these, the pressures at which first yielding in the shells commences were determined for 1 < σypE × 103 < 4The calculations were performed for shells with diameterthickness ratios of 500, 1000 and 2000; other geometric ratios, as detailed in the paper, were also varied. The computations were carried out for steel shells but the results have been presented in dimensionless form.Utilising the above results it is possible to determine whether a given torispherical end closure will buckle elastically or whether an elastic-plastic analysis of the shell is desirable. Factors which are conducive to elastic buckling are a high yield point, a low modulus of elasticity or a large value of the shell diameter-thickness (Dt) ratio. For steel shells, elastic internal pressure buckling will occur (for some combinations of rD and RSD) for Dt = 2000 and σypE = 3 × 10?3. For Dt = 1000 and 500, first yield always precedes elastic buckling for the parameters investigated. The failure mode for these cases is either elastic-plastic buckling or plastic collapse (an axisymmetric mode with large deformations).A comparison of the results of linear and non-linear elastic axisymmetric stress analyses of the shells shows that the linear theory sometimes underestimates the first yield pressure by considerable amounts. Limit pressures obtained from small-deflection shell theories can be too low in such cases.Also given in the paper are approximate simple expressions whereby the elastic internal buckling pressures of torispherical shells may be calculated. These expressions should be useful to designers.  相似文献   

18.
The combustion of aluminum particle, liquid water, and hydrogen peroxide (H2O2) mixtures is studied theoretically for a pressure range of 1–20 MPa and particle sizes between 3 and 70 μm. The oxidizer-to-fuel (O/F) weight ratio is varied in the range of 1.00–1.67, and four different H2O2 concentrations of 0%, 30%, 60%, and 90% are considered. A multi-zone flame model is developed to determine the burning behaviors and combustion-wave structures by solving the energy equation in each zone and enforcing the temperature and heat-flux continuities at the interfacial boundaries. The entrainment of particles is taken into account. Key parameters that dictate the burning properties of mixtures are found to be the thermal diffusivity, flame temperature, particle burning time, ignition temperature, and entrainment index of particles. When the pressure increases from 1 to 20 MPa, the flame thickness decreases by a factor of two. The ensuing enhancement of conductive heat flux to the unburned mixture thus increases the burning rate, which exhibits a pressure dependence of the form rb = apm. The exponent, m, depends on reaction kinetics and convective motion of particles. Transition from diffusion to kinetically-controlled conditions causes the pressure exponent to increase from 0.35 at 70 μm to 1.04 at 3 μm. The addition of hydrogen peroxide has a positive effect on the burning properties. The burning rate is nearly doubled when the concentration of hydrogen peroxide increases from 0 to 90%. For the conditions encountered in this study, the following correlation for the burning rate is developed: rb[cm/s]=4.97(p[MPa])0.37(dp[μm])-0.85(O/F)-0.54exp(0.0066CH2O2).rb[cm/s]=4.97(p[MPa])0.37(dp[μm])-0.85(O/F)-0.54exp(0.0066CH2O2).  相似文献   

19.
20.
This paper presents a simple analysis for the stability of crack growth in 304 stainless steel pipes subject to tensile loads. The model of two identical part-through and part-circumference cracks, symmetrically situated with regard to the pipe cross-section, is examined for crack stability under displacement control tensile loading. Irrespective of the crack depth, the instability condition for a wide range of crack lengths, i.e. except for very short cracks and long cracks, is: 0LπERχ2LπR · 1TMAT > 1 where σ0 is the flow stress, E is Young's modulus, L is the pipe length, R is the pipe radius, χ is the crack tip opening angle, CTOA, associated with the crack growth and TMAT is the material's tearing modulus. With a CTOA of 20° (i.e. TMAT ~ 200), LR must exceed 300 for instability. Since this number is far in excess of the LR values for typical piping systems, the stability of cracks in pipes subject to tensile loads is essentially demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号