首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
以花生壳为原料,用硫代乙醇酸和乙酸酐改性花生壳做固体吸附剂,并探讨了改性前后的花生壳在不同吸附条件下,定量吸附水样中的Cu(Ⅱ),Pb(Ⅱ)的能力,采用原子吸收光度法分别测定其含量的方法。实验得出,对于50mL 5.001μg/mL Cu(Ⅱ)溶液,1.5g巯基花生壳在常温下做2.5h静态吸附的吸附效率最好,可达到92.82%。而对于50ml 43.35μg/mL溶液,2g未改性花生壳(常温)和1g未改性花生壳(加热至40℃)做2.5h静态吸附时吸附效率最好,其吸附效率可以分别达到91.43%和91.26%。  相似文献   

2.
环氧氯丙烷改性花生壳吸附水中Cu~(2+)的研究   总被引:1,自引:0,他引:1  
利用环氧氯丙烷对花生壳改性制备吸附剂,并用其吸附水溶液中Cu2+。实验结果显示,花生壳的改性条件为:花生壳5.0 g,浓度为1.5 mol/L NaOH溶液100 mL,环氧氯丙烷5 mL,反应温度30℃,反应40 min;用上述条件改性花生壳0.3 g,吸附初始浓度50 mg/LCu2+溶液,控制溶液的pH为5.0,吸附时间3.0h,对Cu2+吸附率可达96.0%,高于未改性花生壳的70.4%,使吸附率提高36.4%。  相似文献   

3.
以花生壳为原料,磷酸为活化剂制备花生壳活性炭,采用高分辨电子扫描电镜(SEM)对花生壳活性炭进行了表征。从热力学和动力学的角度,研究了花生壳活性炭对Cu2+的吸附行为。热力学研究表明:花生壳活性炭对Cu2+的吸附符合Langmuir等温吸附方程,该吸附是自发吸热过程。动力学研究表明:花生壳活性炭对Cu2+的吸附符合二级反应动力学方程反应特征,颗粒内扩散为主要控速步骤。  相似文献   

4.
花生壳对Pb~(2+)的吸附特性研究   总被引:3,自引:1,他引:2  
以花生壳为吸附物质,研究了吸附pH值,吸附时间对3种不同产地花生壳吸附水溶液中Pb2+的影响,同时进行解吸研究。研究结果表明:在25℃,Pb2+的质量浓度为30mg/L条件下得出最佳吸附pH值为4.5,吸附平衡时间为30min。花生壳对Pb2+的吸附符合准二级动力学模型,Freundlich模型能很好的拟合等温吸附试验数据。吸附后的花生壳在600℃灼烧灰化回收,Pb2+的回收率达到93%以上。  相似文献   

5.
为了研究小球藻藻体吸附水体中Cd2+、Pb2+和Cu2+的情况,在检测了典型电子垃圾处理区水体中重金属Cd、Pb和Cu浓度的基础上,采用冷冻干燥的小球藻藻体在模拟重金属离子溶液中进行吸附试验。结果表明,水体中重金属Cu的浓度较高,Cd和Pb的污染程度较严重。藻体对于Pb2+的去除效果较好,去除率和去除量分别达到88.42%和13.262 4 mg/g;Cu2+的去除率较低,但去除量高达17.480 6 mg/g;Cd2+去除率较高,但去除量仅有0.433 7 mg/g。  相似文献   

6.
以污泥和花生壳为原料,采用氯化锌为改性剂,于800 W的微波功率条件下热解10min,制备得到污泥-花生壳吸附颗粒。选取吸附时间、pH值和Pb~(2+)初始浓度3个因素,探究其对Pb~(2+)的吸附效果影响。结果表明,当吸附时间为80min时,pH值为6.54,Pb~(2+)溶液初始质量浓度为0.8mg·L~(-1)时,吸附颗粒对Pb~(2+)的吸附率最大,吸附效果最好。  相似文献   

7.
壳聚糖负载膨润土吸附Cu~(2+)的研究   总被引:1,自引:0,他引:1  
杨辉  孙伶  邵红 《辽宁化工》2010,39(9):909-911
以钠基膨润土为原料,利用脱乙酰度90%、浓度为0.5%的壳聚糖溶液对其进行改性,制备了壳聚糖负载膨润土,并应用于含Cu2+模拟废水的处理。确定了最佳实验条件:负载土的投加量15 g/L、pH值为8、离心时间为10 min,在此条件下对Cu2+的去除率达到96.50%。并对负载土的吸附行为和性能进行了研究。  相似文献   

8.
坡缕石黏土吸附Cu~(2+)的动力学   总被引:5,自引:0,他引:5  
通过提纯的坡缕石黏土对水溶液中Cu~(2+)的静态吸附实验,考察了吸附过程的动力学特征,研究了吸附过程的动力学模型、表观活化能和活化热力学参数,并对吸附速率的控制进行了分析。结果表明:在实验条件下坡缕石黏土对水中的Cu~(2+)具有较快的吸附速率,60min可基本达到平衡;吸附过程能较好地符合Lagergren pseudo-second-order吸附动力学方程,速率常数k_2随温度的升高而增大,随Cu~(2+)初始浓度的增加而减小;吸附过程的表观活化能为18.82kJ/mol,是活化的化学吸附,活化焓为16.26kJ/mol,活化Gibbs自由能为75.40~79.38kJ/mol,活化熵为-198.50 J/(mol·K),活化为吸热过程,是缔合反应机制:吸附速率由液膜扩散和颗粒内扩散共同控制,低浓度时主要受液膜扩散控制,高浓度时颗粒内扩散的影响更为明显。  相似文献   

9.
本试验采用水热法和高温煅烧法结合的方式制备三氧化二铁涂层火山岩。利用改性火山岩作为吸附材料对水体中三种主要重金属离子(Ni~(2+)、Cd~(2+)和Cu~(2+))的吸附机理进行了深入的研究,本试验将试验吸附温度设定为20℃,pH值对改性火山岩去除水体中的重金属离子影响十分明显,三种重金属离子的最佳p H值为5.0~6.0。  相似文献   

10.
研究利用离子印迹技术,以壳聚糖为基材、环氧氯丙烷为交联剂制得Cu~(2+)印迹交联壳聚糖树脂微球,并用于水中Cu~(2+)的吸附。结果表明,正交实验确定优化的制备条件:壳聚糖质量分数4%、Cu~(2+)印迹量500 mg/L、交联剂1m L。单因素实验确定的吸附条件:p H为5.0、温度25℃时,此时吸附容量可达到95.0 mg/g,显示良好的Cu~(2+)吸附能力。对Cu~(2+)的吸附过程符合准2级吸附动力学模型和Langmuir吸附等温模型,以表面反应过程控制的化学吸附为主,为放热、自发过程;当Zn~(2+)、Cd~(2+)、Pb~(2+)分别与Cu~(2+)共存时,印迹微球对Cu~(2+)的选择吸附系数最大,达到28.7以上,离子选择性极高;经过5次循环实验后,对Cu~(2+)的吸附率仍达到96.8%,材料的重复利用性和稳定性好。  相似文献   

11.
任铜彦 《广东化工》2016,(20):49-50
文章利用水热法合成了α-FeOOH纳米线,研究了其对于废水中重金属离子(Cu~(2+))的吸附平衡。研究结果表明:Cu~(2+)在α-FeOOH纳米线上的吸附行为更符合Langmuir等温吸附模型,其最大吸附量可达27.15 mg·g~(-1)。且吸附量随着温度的升高呈增加趋势,表明该吸附过程是吸热过程。  相似文献   

12.
实验选用壳聚糖为原料,研究壳聚糖对Cu~(2+)的吸附条件,探讨pH值,壳聚糖投加量,温度,吸附时间等因素对壳聚糖吸附性能的影响,并在不同吸附时间和不同温度下,从动力学和热力学两方面对其吸附性能进行探讨。结果表明,pH 4.0~5.0的条件下壳聚糖对Cu~(2+)的吸附能力最强;随着壳聚糖添加量的增加,其对Cu~(2+)的吸附能力逐渐增强,最佳用量均为4 000 mg/L;随着温度的增加,壳聚糖对Cu~(2+)的吸附能力逐渐增强,不同温度下的ΔG均小于零,且温度越高,ΔG越小,ΔH大于零。随着吸附时间延长,初始阶段吸附速率较快,此后趋于平衡,吸附动力学行为符合拟二级速率模型。  相似文献   

13.
采用未改性的和氨化处理后的活性炭进行Cu2+的吸附平衡实验。考察了溶液p H、吸附温度对两种活性炭的吸附性能的影响。分别采用伪一次方动力学方程、伪二次方动力学方程考察了活性炭的吸附动力学行为。结果表明:经过氨化处理的活性炭能显著提高活性炭对Cu2+的吸附性能,这可能是由于活性炭表面的含氮官能团提高了活性炭的碱性造成的。  相似文献   

14.
本文考察了金属离子初始浓度、树脂投放量、吸附温度、pH值对高吸水树脂吸附重金属Cu2+离子效果的影响。实验结果表明:高吸水树脂对溶液中重金属Cu2+的吸附随重金属离子浓度的增大而增大;随着吸附温度的升高而增加,吸附温度为80℃时吸附容量可达101.51mg/g;随着树脂投放量的增加,树脂对金属Cu2+的吸附容量呈下降趋势;高吸水树脂对溶液中Cu2+的去除率最大值出现在pH为5左右。  相似文献   

15.
《应用化工》2022,(7):1736-1740
采用硼酸-微波二次改性的方法对农业废弃物花生壳进行改性,获得改性生物吸附材料。利用扫描电子显微镜(SEM)、傅里叶红外光谱(FTIR)等手段分析了改性花生壳的结构和成分,并研究了不同因素对改性花生壳吸附性能的影响。结果表明,在花生壳投加量为4 g/L,pH为6~7,30℃的条件下,Cd(2+)的去除率可以达到97.2%,最大吸附量为21.77 mg/L。通过相关模型对动力学和吸附等温曲线的拟合,证明花生壳对Cd(2+)的去除率可以达到97.2%,最大吸附量为21.77 mg/L。通过相关模型对动力学和吸附等温曲线的拟合,证明花生壳对Cd(2+)的吸附是单分子层吸附,吸附过程主要受化学吸附的控制。  相似文献   

16.
采用硼酸-微波二次改性的方法对农业废弃物花生壳进行改性,获得改性生物吸附材料。利用扫描电子显微镜(SEM)、傅里叶红外光谱(FTIR)等手段分析了改性花生壳的结构和成分,并研究了不同因素对改性花生壳吸附性能的影响。结果表明,在花生壳投加量为4 g/L,pH为6~7,30℃的条件下,Cd~(2+)的去除率可以达到97.2%,最大吸附量为21.77 mg/L。通过相关模型对动力学和吸附等温曲线的拟合,证明花生壳对Cd~(2+)的吸附是单分子层吸附,吸附过程主要受化学吸附的控制。  相似文献   

17.
孔德星 《广东化工》2014,(17):41-42
研究了腐植酸对Cu2+在土壤上吸附特性以及相关因素的影响。结果表明,在等温吸附实验中,无论是否加入腐植酸,Cu2+的吸附都能够较好地符合Freundlich方程;并且Cu2+在供试土样上的吸附量随温度升高而降低,表明吸附为放热过程。在吸附动力学实验中,不加腐植酸时,Cu2+在供试土样上的吸附动力学最优方程为Elovich方程,加入腐植酸溶液后,吸附动力学最优方程为一级动力学方程,且Cu2+的吸附平衡时间明显缩短。随着加入腐植酸量的增加,土壤样品对Cu2+的吸附量明显增加。  相似文献   

18.
通过废弃茶叶对水溶液中的Zn2+、Cd2+、Cu2+的吸附实验,讨论了影响茶叶末吸附重金属的初始浓度、吸附时间、pH等影响因素。结果表明,在30 min内,废弃茶叶末对Zn2+、Cd2+、Cu2+3种金属离子的吸附达到最大,最佳pH因金属的不同而有所差异。处理单组分金属离子水溶液时,3种离子的吸附量和吸附率的大小顺序均为Cu2+Cd2+Zn2+。而处理3种金属离子的多组分溶液时,其吸附量和吸附率的顺序则为Cd2+Cu2+Zn2+。  相似文献   

19.
采用NaOH处理过的棉花秸秆去除废水中的Pb2+和Cu2+,探究不同因素对Pb2+、Cu2+的吸附效果的影响,确定最佳吸附工艺条件。结果表明,Pb2+最佳吸附条件为:投加量为33.33 g/L,振荡时间为110 min,吸附温度为25℃,溶液初始浓度为15 mg/L,pH值为5.0,去除率达92%;对Cu2+的最佳吸附条件为:投加量26.67 g/L,振荡时间为110 min,吸附温度为55℃,溶液初始浓度为15 mg/L,pH值为5.0,去除率达90.4%。  相似文献   

20.
采用强酸表面氧化法对碳纳米管进行处理,制备稳定具有高效吸附性能的碳纳米管溶胶,用于去除水中低质量浓度重金属Cd2+,Cu2+。研究表明,在实验的pH值为2.5—9.5,对Cd2+的去除,吸附起主要作用,优化的pH值为6.0;对Cu2+的去除,pH<6.7时,吸附起主要作用,在pH>6.7时,金属离子沉淀是主要的去除原因,在pH=9.5时,达到最大去除率。在相同碳纳米管溶胶投加质量浓度情况下,对Cd2+的吸附去除率远远大于对Cu2+的去除。碳纳米管溶胶对Cd2+,Cu2+的吸附等温线呈线性,对Cd2+的吸附性能优于对Cu2+的吸附性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号