首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Relationships between sintering temperature and annealing atmosphere on microstructure and dielectric, ferroelectric, and piezoelectric properties of reactively sintered CuO-doped Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 (PIN-PMN-PT) ceramics were investigated. Uniform 2−3 μm grain size, dense CuO-doped PIN-PMN-PT ceramics are obtained when oxygen sintered versus a bimodal grain size microstructure when sintered in air. Oxygen sintered ceramics have excellent properties including d33 = 300–315 pC/N, EC = 7.7–8 kV/cm, and tan δ < 1.5%. The MPB region was mapped for ternary compositions doped with 0.5 mol% CuO and sintered in O2. MPB 25PIN-40PMN-35PT demonstrated the maximum piezoelectric properties with d33 = 565 +/− 23 pC/N and kp = 0.64 +/− 0.01. Sintering from 1050 °C to 1200 °C increased the coercive field from 8.5 to 11.5 kV/cm and reduced dielectric losses from tan δ = 1.8% to 0.8% by facilitating diffusion of CuO into the lattice and creating domain wall pinning defect dipoles as evidenced by an increase in the internal field bias of P-E loops.  相似文献   

2.
《Ceramics International》2020,46(7):9129-9135
This work presents the effects of sintering temperature ranging from 1200 °C to 1300 °C at intervals of 20 °C on the crystal structure, ferroelectric properties, and electrocaloric effect (ECE) of Pb0.8Ba0.2ZrO3. Samples sintered at 1240 °C, 1260 °C, and 1280 °C have large remanent polarization and small coercive field. Meanwhile, samples sintered at 1260 °C, 1280 °C, and 1300 °C possess large breakdown field strength. Samples sintered at 1260 °C for 4 h exhibit the optimal ferroelectric properties. Antiferroelectricity-ferroelectricity (AFE-FE) phase transition occurs at room temperature T1 (279 K). Directly examining ECE at this temperature is meaningful, and the temperature change is 0.068 K at approximately 60 °C and 30 kV/cm. Results laid the foundation for studying the performance of ferroelectric and ECE within this phase-transition temperature range and provide a reference for new solid-state refrigeration technology.  相似文献   

3.
In this investigation we show that the dielectric, ferroelectric and piezoelectric properties of stoichiometric 0.57Pb(Sc1/2Nb1/2)O3-0.43PbTiO3 (0.57PSN-0.43PT) ceramics prepared by mechanochemical synthesis are comparable or even better than the properties of 0.57PSN-0.43PT ceramics with Nb doping, which was proposed to enhance the electrical properties. Here, the stoichiometric ceramic was sintered to 97% of theoretical density at a temperature of 1000 °C, which is 200-300 °C lower than previously reported. The dielectric constant ?, remnant polarization Pr, piezoelectric coefficient d33, coupling coefficients kp and kt and mechanical quality factor Qm of the ceramics prepared by mechanochemical synthesis were 2200, 43 μC/cm2, 570 pC/N, 0.71, 0.56 and 38, respectively.The effects of the poling field on the structural and electrical properties of the 0.57PSN-0.43PT ceramics were investigated. The results show that the ratio of the monoclinic to the tetragonal phases is influenced by the application of the poling electric field. The non-poled ceramics contain 71% of the monoclinic phase and 29% of the tetragonal phase. The highest d33, kp and kt were measured for ceramics poled at an electric field of 3 kV/mm. For these poled ceramics a phase determination of 86% monoclinic phase and 14% tetragonal phase was obtained from Rietveld refinements.  相似文献   

4.
Nano-sized light rare-earth (La, Pr, Nd, and Sm) doped Ba0.90Ca0.10Ti0.90Zr0.10O3 ceramics were synthesized to enhance the energy storage performance. The Rietveld study of bare and doped samples has shown tetragonal crystal symmetry and a single-phase perovskite structure. The rare-earth addition in Ba0.90Ca0.10Ti0.90Zr0.10O3 has resulted in a remarkable change in the microstructure of the doped samples. The addition of Nd in Ba0.90Ca0.10Ti0.90Zr0.10O3 lattice has resulted in optimum grain size and density among the five compositions. As a result of improvement in morphological characteristics in the Nd-doped sample, the dielectric, ferroelectric and piezoelectric characteristics were significantly enhanced. The Nd-doped sample has shown a relaxor behavior with a maximum dielectric constant of 10788 combined with a high saturation polarization of 41.88 μC/cm2. Further, the material has shown optimum electromechanical behavior with excellent aging characteristics. The obtained properties of Nd-doped Ba0.90Ca0.10Ti0.90Zr0.10O3 sample justifies its potential application in multi-layer energy storage capacitors.  相似文献   

5.
6.
《应用陶瓷进展》2013,112(1):20-24
Abstract

Abstract

Low temperature sintering of α‐Si3N4 matrix ceramics was developed in the present study using 4?wt‐%MgO together with Al2O3 or AlPO4 as the sintering additives and spark plasma sintering technique. The results suggested that α‐Si3N4 ceramics could be densified at low sintering temperature by adjusting both the sintering temperature and sintering additive content. For low temperature sintered α‐Si3N4 ceramics, using MgO and Al2O3 as the sintering additives, the densification is not complete at a temperature lower than 1600°C, and the mechanical strength is <200?MPa. When MgO and AlPO4 were used as the sintering additives, the increase in AlPO4 content not only declines the sintering temperature but also promotes the mechanical property of the sintered Si3N4 ceramics. It was the AlPO4 phosphate binder that played a significant role in low temperature sintering of Si3N4 ceramics.  相似文献   

7.
氧化铝陶瓷低温烧结的研究现状和发展前景   总被引:19,自引:0,他引:19  
本文综述了氧化铝陶瓷低温烧结的研究现状,包括粉体的制备,处理,成型及烧结工艺,并对此领域做了相应的设想和展望。  相似文献   

8.
《Ceramics International》2022,48(10):13780-13793
In this work, Bi3+ doped Ba0.98-3x/2BixCa0.02Zr0.02Ti0.976Cu0.008O3 [0 ≤ x ≤ 0.03] lead free ceramics, to be employed for structural, dielectric and ferroelectric studies, have been synthesized via conventional solid state reaction method. Rietveld refinement of the X-ray diffraction (XRD) data evidences the existence of a pure perovskite phase with tetragonal symmetry for all ceramics. The Scanning Electron Microscopy (SEM) reveals that the grain size, which is 16.14 μm for x = 0 reduced to 2.11 μm for x = 0.03. Dielectric studies demonstrate excellent dielectric behavior with high Curie temperature (TC ~159 °C), high dielectric constant (εr ~834, εmax ~ 3146), and a low dielectric loss (tanδ ~ 0.019), for an optimum value of x = 0.02. The analysis of temperature coefficient of the dielectric permittivity indicates the applicability of these materials in multilayer ceramic capacitors. Impedance studies, conducted to understand the underlying physical mechanisms, are found to be in good agreement with the results of structural and dielectric studies. Furthermore, the ferroelectric measurement confirms the ferroelectric nature for all samples with an energy storage efficiency (η) of ~42% for x = 0.02 composition.  相似文献   

9.
Barium titanate doped with calcium and zirconium (BCTZ) could be used at low temperature to replace lead based piezoelectric ceramics (PZT). The classical way to obtain BCTZ is the solid-state route coupled with conventional sintering, but this step is time-consuming. To reduce the duration of this process, microwave heating was used for sintering. It is a fast sintering method and the heating rate was around 200 °C/min in this study. Slightly better electrical properties with finer microstructures (d33* = 706 pm/V, grain size about 42.1 ± 14.2 μm) were obtained for samples sintered by microwave heating during 50 min compared to the conventional sintering (d33* = 622 pm/V, 22.6 ± 4.4 μm). The main result of this study is that by using microwave heating, the sintering step duration (including heating, dwell time and cooling) was drastically reduced: 1.5 h for microwave sintering against 12.5 h for conventional sintering.  相似文献   

10.
To assist the development of applications for multilayer piezoelectric devices, the low-temperature sintering piezoelectric ceramics of 0.3Pb(Zn1/3Nb2/3)O3-0.7Pb(Zr0.49Ti0.51)O3 with Li2CO3 and Sm2O3 additives were fabricated by a conventional solid-state reaction, and their structural and piezoelectric properties were studied. With the addition of Li2CO3, the minimum sintering temperature of 0.3Pb(Zn1/3Nb2/3)O3-0.7Pb(Zr0.49Ti0.51)O3 piezoelectric ceramics was reduced from 1125 °C to 950 °C through the formation of a liquid phase and its piezoelectric properties showed almost no degradation. When the sintering temperature was below 950 °C, however, the piezoelectric properties degraded obviously. The additional Sm2O3 resulted in a significant improvement in the piezoelectric properties of 0.3Pb(Zn1/3Nb2/3)O3-0.7Pb(Zr0.49Ti0.51)O3 ceramic with added Li2CO3. When sintered at 900 °C, the optimized properties of the 0.3Pb(Zn1/3Nb2/3)O3-0.7Pb(Zr0.49Ti0.51)O3 piezoelectric ceramic with 0.3 wt% Li2CO3 and 0.3 wt% Sm2O3 were obtained as d33 = 483 pC/N, k31 = 0.376, Qm = 73, ɛr = 2524, tan δ = 0.0178.  相似文献   

11.
Lead-free piezoelectric ceramics have received more attention due to the environmental protection of the earth. (K, Na)NbO3-based ceramics are one of the most promising candidates. Normal sintering of un-doped and Li/Ta co-doped (K, Na)NbO3 ceramics was investigated to clarify the optimal sintering condition for densification, microstructure and electrical properties. It was found that density increased greatly within a narrow temperature range but turned to decrease when the sintering temperature slightly exceeded the optimal one. Piezoelectric properties also showed similar relationship between the density and sintering temperature, but the highest piezoelectric strain coefficients were obtained at the temperatures lower than that for the highest density. The grain growth and property change as a function of sintering temperature were discussed on basis of the formation of liquid-phase and the composition deviation caused by the volatilization of alkali components during sintering.  相似文献   

12.
13.
Lead-free 0.955K0.5Na0.5NbO3-0.045Bi0.5Na0.5ZrO3?+?0.6%MnO (KNN-0.045BNZ?+?Mn0.6) ceramics have been prepared by a conventional solid-state sintering method in air. All the samples sintered at different temperatures possess a coexisting phase boundary (CPB) between rhombohedral (R) phase and tetragonal (T) phase. The increase of sintering temperature (Ts) increases the phase fraction of T phase in CPB region. Mn2+, Mn3+ and Mn4+ ions coexist in all the KNN-0.045BNZ?+?Mn0.6 ceramics sintered at 1110?°C to 1190?°C. High sintering temperature can induce a transformation from MnNb'' defects to MnNb' defects. The samples with fine grain show stable octahedral structure. The KNN-0.045BNZ?+?Mn0.6 ceramics with fine grain possess excellent temperature stability of d33* due to the wide phase transition region. The increase of sintering temperature induces the (R-T) phase transition temperature to move to room temperature.  相似文献   

14.
Flash sintering is a novel densification technology for ceramics, which allows a dramatic reduction of processing time and temperature. It represents a promising sintering route to reduce economic, energetic and environmental costs associated to firing. Moreover, it allows to develop peculiar and out-of-equilibrium microstructures.The flash process is complex and unusual, including different simultaneous physical and chemical phenomena and their understanding, explanation and implementation require an interdisciplinary approach from physics, to chemistry and engineering. In spite of the intensive work of several researchers, there is still a wide debate as for the predominant mechanisms responsible for flash sintering process.In the present review, the most significant and appealing mechanisms proposed for explaining the “flash” event are analyzed and discussed, with the aim to point out the level of knowledge reached so far and identify, at least, possible shared theories useful to propose future scientific activities and potential technological implementations.  相似文献   

15.
yPb(In1/2Nb1/2)O3-(1 − x − y)Pb(Mg1/3Nb2/3)O3-xPbTiO3 (yPIN-(1 − x − y)PMN-xPT) polycrystalline ceramics with morphotropic phase boundary (MPB) compositions were synthesized using columbite precursor method. X-ray diffraction results indicated that the MPB of PIN-PMN-PT was located around PT = 0.33-0.36, confirmed by their respective dielectric, piezoelectric and electromechanical properties. The optimum properties were found for the MPB composition 0.36PIN-0.30PMN-0.34PT, with dielectric permittivity ?r of 2970, piezoelectric coefficient d33 of 450 pC/N, planar electromechanical coupling kp of 49%, remanent polarization Pr of 31.6 μC/cm2 and TC of 245 °C. According to the results of dielectric and pyroelectric measurements, the Curie temperature TC and rhombohedral to tetragonal phase transition temperature TR-T were obtained, and the “flat” MPB for PIN-PMN-PT was achieved, indicating that the strongly curved MPB in PMN-PT system was improved by adding PIN component, offering the possibility to grow single crystals with high electromechanical properties and expanded temperature usage range (limited by TR-T).  相似文献   

16.
A hydrothermally processed bulky powder composed of loosely aggregated nano-sized rods was consolidated by spark plasma sintering. The use of a high pressure cell allows the application of pressure up to 500 MPa. It was found that applying of high pressure is beneficial for widening up the kinetic window for attaining dense HAp nanoceramics. The high transparency of HAp nanoceramics obtained in this study is ascribed to the high density and homogeneous nano-grained structure achieved besides the unique intrinsic optical properties of the HAp crystal itself, i.e. its low refractive index and very small birefringence. Achieving full densification at the minimized sintering temperature allows for the first time the preparation of transparent HAp nanoceramics with stoichiometric composition, i.e. avoiding the loss of structural water that commonly takes place during the conventional ways of sintering.  相似文献   

17.
SiC/20?wt% ZrB2 composite ceramics were fabricated via pressureless solid phase sintering in argon atmosphere at different temperature. The effect of sintering temperature on microstructure, electrical properties and mechanical properties of SiC/ZrB2 ceramics was investigated. Electrical resistivity exhibits twice significant decreases with increasing sintering temperature. The first decrease from 1900?°C to 2000?°C is attributed to the obvious decrease of continuous pore channels in as-sintered materials. The second decrease from 2100?°C to 2200?°C results from the improvement of carbon crystallization and the disappearance of amorphous layers enveloping ZrB2 grains. Additionally, the increase of sintered density with increasing temperature caused greatly advance of flexural strength, elastic modulus and Vickers hardness. But excessive temperature is detrimental to flexural strength because of SiC grain growth.  相似文献   

18.
《Ceramics International》2022,48(14):20251-20259
In this study, it is reported that various properties can be selectively derived in a pure (K0.5Na0.5)NbO3, KNN ceramics through optimizing the sintering temperature by the conventional sintering method. High piezoelectric, ferroelectric, and dielectric properties such as d33 = 127 pC/N, Pr = 31 μC/cm2, and εr = 767 are obtained at the sintering temperature of 1100 °C. On the contrary, the specimen sintered at 1130 °C does not show high piezoelectric and ferroelectric properties, but it is translucent with a transmittance of 22% and 57% at the wavelength of 800 and 1600 nm respectively and shows a very high dielectric constant εr of 881. The origin of the high piezoelectric constant owes to large remanent polarization and dielectric constant, and dense microstructure with uniform distribution of large grains with the conjunction of relatively large crystal anisotropy. On the other hand, dense microstructure with almost no porosity, highly compacted grain boundaries, uniform distribution of grains, and relatively low crystalline anisotropy are responsible for the translucency and large dielectric constant of the ceramic specimens. This study demonstrates that the lead-free KNN ceramic has the potential to show multiple noteworthy properties such as piezoelectric, ferroelectric, dielectric, and transparent properties. This work provides a pure KNN ceramic simultaneously with high piezoelectric and transparent characteristics prepared only by using the conventional sintering method at a moderate sintering temperature for the first time in the literature.  相似文献   

19.
《Ceramics International》2016,42(11):13285-13290
1 at% Nd, 3 at% Y doped CaF2 transparent ceramics were obtained by hot pressing at the sintering temperature varing from 500 to 800 °C under vacuum environment with co-precipitated CaF2 nanopowders. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) analysis showed that the obtained nanoparticles were single fluorite phase with grain size around 26 nm. Scanning electron microscopy (SEM) observations of the Nd, Y: CaF2 ceramics indicated that the mean grain size of the ceramic sintered at 800 °C was about 748 nm. The influence of the temperature on the grain size, microstructure and optical transmittance was investigated. For the ceramic sintered at 800 °C, the transmittance was 85.49% at the wavelength of 1200 nm. The room temperature emission spectra of Nd: CaF2 and Nd, Y: CaF2 ceramics were measured and discussed.  相似文献   

20.
Since the electromechanical devices move towards enhanced power density, high mechanical quality factor (Qm) and electromechanical coupling factor (kp) are commonly needed for the high powered piezoelectric transformer with Qm≥2000 and kp=0.60. Although Pb(Mn1/3Nb2/3)O3–PbZrO3–PbTiO3 (PMnN–PZ–PT) ceramic system has potential for piezoelectric transformer application, further improvements of Qm and kp are needed. Addition of 2CaO–Fe2O3 has been proved to have many beneficial effects on Pb(Zr,Ti)O3 ceramics. Therefore, 2CaO–Fe2O3 is used as additive in order to improve the piezoelectric properties in this study. The piezoelectric properties, density and microstructures of 0.07Pb(Mn1/3Nb2/3)O3–0.468PbZrO3–0.462PbTiO3 (PMnN–PZ–PT) piezoelectric ceramics with 2CaO–Fe2O3 additive sintered at 1100 and 1250 °C have been studied. When sintering temperature is 1250 °C, Qm has the maximum 2150 with 0.3 wt.% 2CaO–Fe2O3 addition. The kp more than 0.6 is observed for samples sintered at 1100 °C. The addition of 2CaO–Fe2O3 can significantly enhance the densification of PMnN–PZ–PT ceramics when the sintering temperature is 1250 °C. The grain growth occurred with the amount of 2CaO–Fe2O3 at both sintering temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号