首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
We fabricated x(Bi0.5Na0.5)TiO3–(1−x)[BaTiO3–(Bi0.5Na0.5)TiO3–Nb] (BNT-doped BTBNT-Nb) dielectric materials with high permittivity and excellent high-temperature energy storage properties. The initial powder of Nb-modified BTBNT was first calcined and then modified with different stoichiometric ratios of (Bi0.5Na0.5)TiO3 (BNT). Variable-temperature X-ray diffraction (XRD) results showed that the ceramics with a small amount of BNT doping consisted of coexisting tetragonal and pseudocubic phases, which transformed into the pseudocubic phase as the test temperature increased. The results of transmission electron microscopy (TEM) showed that the ceramic grain was the core-shell structure. The permittivity of the 5 mol% BNT-doped BTBNT-Nb ceramic reached up to 2343, meeting the X9R specification. The discharge energy densities of all samples were 1.70-1.91 J/cm3 at room temperature. The discharge energy densities of all samples fluctuated by only ±5% over the wide temperature range from 25°C to 175°C and ±8% from 25°C to 200°C. The discharge energy density of the 50 mol% BNT-doped BTBNT-Nb ceramic was 2.01 J/cm3 at 210 kV/cm and 175°C. The maximum energy efficiencies of all ceramics were up to ~91% at high temperatures and were much better than those at room temperature. The stable dielectric properties within a wide temperature window and excellent high-temperature energy storage properties of this BNT-doped BTBNT-Nb system make it promising to provide candidate materials for multilayer ceramic capacitor applications.  相似文献   

2.
MnO2 and Nb2O5 co-doped 0.9BaTiO3-0.1(Bi0.5Na0.5)TiO3 powders with excellent dielectric properties were fabricated using a conventional solid-state reaction method and sand milling. The doping effects of various amounts of MnO2 on the dielectric properties were investigated. The results revealed that the dielectric properties greatly depended on the concentration of MnO2. All the ceramics met the X9R specification. The dielectric loss decreased with an increasing concentration of MnO2. The specimen with an appropriate amount of 0.2 mol% MnO2 exhibited the most enhanced properties: high insulation resistance (2.49 × 1013 Ω/cm) and improved degradation properties. Multilayer ceramic capacitor (MLCC) chips were prepared by tape casting using a 0.2 mol% Mn-doped 9010BTBNT-based ceramic powder. The capacitance of the MLCC chip was approximately 100 nF, and the dielectric loss was approximately 1.75% at room temperature. The high-temperature accelerated lifetime was over 1000 hours under 250 V (five times the working voltage) and at 230°C, indicating that the MLCC chips possess superior reliability.  相似文献   

3.
To meet the needs of future multilayer ceramic capacitors (MLCCs), thinner dielectric layers are necessary. To achieve this goal, the grain size and uniformity of the particles must be effectively controlled. In this study, we confirmed a core–shell particle structure by means of X‐ray diffraction, scanning electron microscopy, and energy‐dispersive spectroscopy. The dielectric properties of the ceramics were measured using an LCR meter. We found Ba0.991Bi0.006TiO3 particles form a core that was coated with a homogeneous Nb2O5–Co3O4 layer (~9 nm). The relationship between core–shell structure and εr‐T curves of the Ba0.991Bi0.006TiO3@Nb2O5–Co3O4 ceramics by different sintering temperature has been investigated. Dense, fine‐grained Ba0.991Bi0.006TiO@Nb2O5–Co3O4 ceramics were obtained by sintering at 1160°C. The ceramics met the X8R requirements, with a maximum dielectric constant of 2795, and a low dielectric loss at room temperature of 0.89%.  相似文献   

4.
《应用陶瓷进展》2013,112(7):435-442
Nb-doped 0.90BaTiO3-0.10(Bi0.5Na0.5)TiO3 temperature-insensitive ceramics with novel core-shell structure were sintered at low temperature by the conventional solid-state reaction method. The beneficial role of Nb in facilitating the formation of core-shell structure because of chemical inhomogeneity is verified, which is responsible for the weak temperature dependence of dielectric properties. Temperature dependence of permittivity measured at different frequencies shows high frequency dispersion at low temperature, while without relaxor characteristic at high temperature. The Vogel–Fulcher model was adopted to study the relaxor behaviour of Nb-doped 0.90BaTiO3-0.10(Bi0.5Na0.5)TiO3 ceramics at low temperature. The samples with an addition of 1.5?mol% Nb2O5 provide a temperature coefficient of capacitance meeting the requirements of the X9R characteristic, and result exhibits an optimum dielectric behaviour of εr ~1900, tanδ ~1.8% at room temperature, making the material a promising candidate for high temperature applications.  相似文献   

5.
A series of 0.75Ba(1?x)La2x/3TiO3-0.25Bi(Mg0.5Ti0.5)O3 (x = 0–0.2) ceramics have been synthesized by doping La2O3 into 0.75BaTiO3-0.25Bi(Mg0.5Ti0.5)O3 (0.75BT-0.25BMT), and their structure and dielectric properties investigated. Upon characterizing the structural properties, the single-phase perovskite structure is identified for all the samples and the long-range order of 0.75BT-0.25BMT is verified to be further destroyed with the addition of La2O3. Moreover, it is found that the density of 0.75BT-0.25BMT can be improved by doping with La2O3, which also promotes the grain growth. Regarding the dielectric properties, the peak shifting effect induced by La3+ improves the permittivity-temperature stability of 0.75BT-0.25BMT remarkably by strengthening its relaxation behavior. Among all the samples, 0.75Ba0.8La0.4/3TiO3-0.25Bi(Mg0.5Ti0.5)O3 shows the most outstanding permittivity-temperature stability with εr = 572 ± 15% (compared with εr at 25 °C) over the temperature range ?70°C–238 °C at 1 kHz, which is notably better than that of 0.75BT-0.25BMT (?4°C–58 °C) and satisfies the specification of the X9R multilayer ceramic capacitor (MLCC). Our work provides one promising option for selecting an alternative dielectric material in terms of permittivity-temperature stability, which advances the development of the X9R MLCC.  相似文献   

6.
A novel BaTiO3–Na0.5Bi0.5TiO3–Nb2O5–NiO (BT‐NBT‐Nb‐Ni) system that meets the X8R specification (?55°C–150°C, ΔC/C≤±15%) of multilayer ceramic capacitors (MLCCs) was fabricated, with a maximum dielectric constant of 2350 at room temperature (25°C). Core–shell microstructure was observed by transmission electron microscopy (TEM), accounting for the good dielectric temperature stability. The role of Ni on the formation of core–shell structure and phase structure, and the subsequent relationship between structure and dielectric/ionic conduction properties were investigated. It was observed that the addition of Ni could adjust the ratio of core/shell, and significantly reduces the dielectric loss over the studied temperature range. A new Ba11(Ni, Ti)28O66+x phase with a 10‐layer close‐packed structure was identified by X‐ray diffraction (XRD), serving as a source of oxygen vacancies for ionic conduction in addition to Ba(Ni,Ti)O3. Furthermore, the impedance spectroscopy measurements demonstrated the remarkable impact of these Ni‐induced oxygen vacancies on both the grain and grain‐boundary conductivities.  相似文献   

7.
Ho3+-doped (K0.5Na0.5)NbO3-based transparent ceramics have been prepared via pressureless solid-state method. The ceramics possess moderate optical transparency with the energy band gap of ~2.9 eV and submicron-sized grains (<500 nm). The temperature-dependent dielectric properties and ferroelectric polarization-electric field hysteresis loops demonstrate that the ceramics own relaxor-like characteristics. The up-conversion photoluminescence and optical temperature sensing properties of the ceramics have been investigated. The temperature dependence of photoluminescence provides a fluorescent method to detect phase transitions, which can be expanded to other ferroelectric systems. The outstanding optical temperature sensitivity (~0.0075/K at 430 K) of the ceramic is higher than many other rare-earth-doped ceramics or glasses. These results suggest that the Ho3+-doped (K0.5Na0.5)NbO3-based transparent ceramics are promising lead-free transparent materials for multifunctional applications, especially in temperature sensing devices.  相似文献   

8.
Research findings of the microstructure, dielectric, ferroelectric characteristics, and Mössbauer effect of solid solution ceramics with 0.5BiFeO3–0.5PbFe0.5Nb0.5O3 composition in a wide temperature range are presented. The examined ceramic chip surface allows one to draw conclusions about the internal homogeneity of grains and the absence of pores inside them. It was shown that Fe3+ iron cations in the material are valence and they are found only in seven locally different states, which is associated with disorder in the solid solution structure. The Néel temperature is TN ~ 445 K. The anomalous behavior at T < 30 K becomes clear when analyzing the dielectric spectra of 0.5BiFeO3–0.5PbFe0.5Nb0.5O3 ceramics in the range of 10 … 1000 K. It is explained by the appearance of a spin-glass state in the object. The presence of contributions to the dielectric response in ceramics at T > 300 K is revealed. It is claimed that the ferroelectric–relaxor → paraelectric phase transition caused the low-temperature contribution, and the second one is a manifestation of the Maxwell–Wagner polarization and the corresponding non-Debye type dielectric relaxation. The causes of the revealed regularities and the prospects for using the material in the thin films form are discussed.  相似文献   

9.
Multiferroic ceramics were prepared and characterized in (1?x)BiFeO3x(0.5CaTiO3–0.5SmFeO3) system by a standard solid‐state reaction process. The structure evolution was investigated by X‐ray diffraction and Raman spectrum analyses. The refinement results confirmed the different phase assemblages with varying amounts of polar rhombohedral R3c and nonpolar orthorhombic Pbnm as a function of the substitution content. In the compositions range of 0.2≤x≤0.5, polar R3c and nonpolar Pbnm coexisted, which was referred to polar‐to‐nonpolar morphotropic phase boundary (MPB). According to the dielectric and DSC analysis results, the ceramics with x≤0.2 changed to diffused ferroelectric, and the ferroelectric properties were enhanced significantly. Two dielectric relaxations were detected in the temperature range of 200‐300 K and 500‐700 K, respectively. The high‐temperature dielectric relaxation was attributed to the grain‐boundary effects. While the low temperature dielectric relaxation obtained in the samples with x=0.3‐0.5 was related to the charge transfer between Fe2+ and Fe3+. The magnetic hysteresis loops measured at different temperature indicated the enhanced magnetic properties in the present ceramics, which could be attributed to the suppressed cycloidal spin magnetic structure by Ti ions. In addition, the rare‐earth Sm spin moments might also affect the magnetic properties at relatively lower temperature.  相似文献   

10.
《Ceramics International》2022,48(10):14323-14328
Novel Li1.0Nb0.6Ti0.5O3: Tb3+ ceramics with favorable luminescent and dielectric properties were prepared by solid-state reaction (SSR) method. The X-ray diffraction (XRD) results indicated that the Tb3+ ions were effectively dissolved into the “M-phase” matrix synthesized at 1000–1100°C. The ceramic with a dense microstructure could be obtained at 1050°C. The Li1.0Nb0.6Ti0.5O3: Tb3+ ceramics emitted green light at 550 nm and relatively strong red light at 660 nm under the excitation of 440 nm, which were located in the orange-red light region shown in the chromaticity diagram. The color coordinates were (0.5574, 0.4417) for the Li1.0Nb0.6Ti0.5O3: 2wt% Tb3+ ceramic sintered at 1050°C. The quantum efficiency of Li1.0Nb0.6Ti0.5O3: 2wt%Tb3+ ceramic was 19%, which was much higher than that of 9.6% for commercial red Y2O3: Eu3+ phosphors. Furthermore, for Li1.0Nb0.6Ti0.5O3: 2wt%Tb3+ ceramic synthesized at 1050°C, the ideal dielectric properties with εr of 66.263 and Q*f of 5582 GHz were obtained, which might be used as a potentially multifunctional ceramic applied in the fields of LED packaging to improve the lack of red light for blue LEDs combined with yellow phosphors.  相似文献   

11.
《Ceramics International》2021,47(19):27545-27552
B2O3 and CuO were codoped into 6Nd[(Zn0.7Co0.3)0.5Ti0.5]O3–4(Na0.5Nd0.5)TiO3 (abbreviated as 6NZCT–4NNT) ceramics as sintering aids. The influences of the sintering aids on the sintering characteristics, microstructure and microwave dielectric properties of the 6NZCT–4NNT ceramics were systematically investigated as a function of the proportion of B2O3 and CuO. Codoping could greatly reduce the sintering temperature from 1410 °C to 1150 °C, indicating that B2O3/CuO are good sintering aids for 6NZCT–4NNT ceramics. The B2O3/CuO sintering aids had no significant impact on the phase purity of the investigated ceramics, even though a solid solution was formed due to Cu2+ ion substitution. However, they had evident influences on the surface morphology and grain size. The average grain size was enlarged with increasing amounts of CuO in the B2O3/CuO sintering aids. Remarkable deterioration of the microwave dielectric properties for 6NZCT-4NNT ceramics was not observed when codoping an appropriate amount of B2O3 and CuO. The 6NZCT–4NNT ceramics codoped with 2.0 mol% B2O3 and 2.0 mol% CuO sintered at 1150 °C for 3 h exhibited a homogeneous microstructure and promising microwave dielectric properties: an appropriate dielectric constant (εr = 49.37), a high quality factor (QF = 47,295 GHz), and a near-zero temperature coefficient of resonant frequency (TCF = +0.9 ppm/°C).  相似文献   

12.
《Ceramics International》2016,42(3):4274-4284
Bi0.5(Na0.65K0.35)0.5TiO3 (BNKT) and Mn-modified Bi0.5(Na0.65K0.35)0.5(MnxTi1−x)O3 (BNKMT-103x), (x=0.0–0.5%) ferroelectric ceramics were synthesized by solid-state reaction method. Optimization of calcination temperature in Mn-doped ceramics was carried out for the removal of secondary phases observed in XRD analysis. BNKMT ceramics sintered at 1090 °C showed enhanced dielectric, piezoelectric and ferroelectric properties in comparison to pure BNKT. The average grain size was found to increase from 0.35 μm in BNKT to 0.52 μm in Bi0.5(Na0.65K0.35)0.5(Mn0.0025Ti0.9975)O3 (BNKMT-2.5) ceramics. The dielectric permittivity maximum temperature (Tm) was increased to a maximum of 345 °C with Mn-modification. AC conductivity analysis was performed as a function of temperature and frequency to investigate the conduction behavior and determine activation energies. Significant high value of piezoelectric charge coefficient (d33=176 pC/N) was achieved in BNKMT 2.5 ceramics. Improved temperature stability of ferroelectric behavior was observed in the temperature dependent P–E hysteresis loops as a result of Mn-incorporation. The fatigue free nature along with enhanced dielectric and ferroelectric properties make BNKMT-2.5 ceramic a promising candidate for replacing lead based ceramics in device applications.  相似文献   

13.
Ferroelectric (1-x)Sr0.875Pb0.125TiO3-xBi(Mg0.5Zr0.5)O3 ((1-x)SPT-xBMZ, x = 0-0.2) ceramics with high discharge efficiency and power density were synthesized via a conventional solid-state sintering method. The prepared (1-x)SPT-xBMZ ceramics were detected as a pure perovskite structure and a dense microstructure, and a typical relaxor behavior and an excellent temperature stability were also observed. Although there is no direct correlation between the degree of diffuseness and the maximum polarization, the high degree of diffuseness can reduce the remanent polarization and significantly improve energy storage and release characteristics of ferroelectric ceramics. Based on a polarization electric-field loop measurement, a recoverable energy storage density of 0.762 J/cm3 and a very high efficiency of 96.34% are achieved when x = 0.2 under 150 kV/cm. The energy storage properties of 0.8SPT-0.2BMZ ceramic exhibit good temperature stability (25−130 °C) and frequency stability (2−80 Hz). In a practical charge-discharge circuit testing, a short discharge pulse-period about 94 ns, a high discharge energy density of 1.7 J/cm3 and an ultra-high-power density of 62.8 MW/cm3 are obtained for the 0.8SPT-0.2BMZ ceramic at 240 kV/cm. The results indicate that the 0.8SPT-0.2BMZ ceramic is a promising dielectric material for high-power pulse capacitors.  相似文献   

14.
Ho2O3 transparent ceramics were fabricated by vacuum pre-sintering combined with hot isostatic pressing (HIP) post-treatment at relatively low temperature from high-purity Ho2O3 powder calcined at 1000 °C for 4 h. The optimal Ho2O3 ceramic sample prepared by vacuum pre-sintering at 1250 °C and HIP post-treating at 1450 °C has a dense microstructure with average grain size of 0.77 μm, and the in-line transmittances reach 80.7 % at 1550 nm and 76.7 % at 1064 nm. The effect of air annealing on the optical quality of Ho2O3 ceramics was studied, and the existence of compressed pores in the HIP-ed Ho2O3 ceramics was confirmed. The Verdet constants of Ho2O3 ceramics were measured to be -47.4 rad/(T m at 1064 nm and -15.4 rad/(T m at 1561 nm. High transmittance and large Verdet constant in the wavelength regions 1–1.07 μm, 1.3–1.5 μm make Ho2O3 transparent ceramics promising for magneto-optical devices for lasers based on Yb-, Nd-doped materials and telecom lasers.  相似文献   

15.
In this study, the phase structure, microstructure and dielectric properties of Bi0.5(Na0.78K0.22)0.5(Ti1-xNbx)O3 lead-free ceramics prepared by traditional solid phase sintering method were studied. The second phase pyrochlore bismuth titanate (Bi2Ti2O7) was produced in the system after introduction of Nb5+. The dielectric constant of the sample (x = 0.03) sintered at 1130 °C at room temperature reached a maximum of 1841, and the dielectric loss was 0.045 minimum. It had been found that the K+ and Nb5+ co-doped Bi0.5Na0.5TiO3 (BNT) lead-free ceramics exhibited outstanding dielectric-temperature stability within 100–400 °C with Tcc ≤±15%. Result of this research provides a valuable reference for application of BNT based capacitors in high temperature field.  相似文献   

16.
0.94(Na0.5Bi0.5+x)TiO3–0.06BaTiO3 (x = ?0.04, 0, 0.02; named NB0.46T‐6BT, NB0.50T‐6BT, NB0.52T‐6BT, respectively) lead‐free piezoelectric ceramics were prepared via the solid‐state reaction method. Effects of Bi3+ nonstoichiometry on microstructure, dielectric, ferroelectric, and piezoelectric properties were studied. All ceramics show typical X‐ray diffraction peaks of ABO3 perovskite structure. The lattice parameters increase with the increase in the Bi3+ content. The electron probe microanalysis demonstrates that the excess Bi2O3 in the starting composition can compensate the Bi2O3 loss induced during sample processing. The size and shape of grains are closely related to the Bi3+ content. For the unpoled NB0.50T‐6BT and NB0.52T‐6BT, there are two dielectric anomalies in the dielectric constant–temperature curves. The unpoled NB0.46T‐6BT shows one dielectric anomaly accompanied by high dielectric constant and dielectric loss at low frequencies. After poling, a new dielectric anomaly appears around depolarization temperature (Td) for all ceramics and the Td values increase with the Bi3+ amount decreasing from excess to deficiency. The diffuse phase transition character was studied via the Curie–Weiss law and modified Curie–Weiss law. The activation energy values obtained via the impedance analysis are 0.69, 1.05, and 1.16 eV for NB0.46T‐6BT, NB0.50T‐6BT and NB0.52T‐6BT, respectively, implying the change in oxygen vacancy concentration in the ceramics. The piezoelectric constant, polarization, and coercive field of the ceramics change with the variation in the Bi3+ content. The Rayleigh analysis suggests that the change in electrical properties of the ceramics with the variation in the Bi3+ amount is related to the effect of oxygen vacancies.  相似文献   

17.
In this paper, a simple, reproducible and cost-effective solid-state reaction sintering process is developed to fabricate (K0.5Na0.5)NbO3-xBaNi0.5Nb0.5O3-δ (KNN-xBNN) ceramics with a narrow bandgap and room-temperature ferromagnetism. Here, we report a systematic investigation of the influence of the BaNi0.5Nb0.5O3-δ (BNN) concentration on the properties of KNN-xBNN ceramics. All ceramics form orthorhombic perovskite structures with a space group Amm2 and a weak peak at the wavelength of 550 cm?1 that is characteristic of the pillow shoulder of the orthorhombic phase. KNN-xBNN ceramics with x between 0.02 and 0.08 have a narrow bandgap of about 2.5 eV—much smaller than the 3.5 eV of its parent (K0.5Na0.5)NbO3 (KNN) ceramic—which is attributed to Ni2+-oxygen vacancy combinations (Ni2+-VO) raising the valence electron energy level of the KNN ceramic. Furthermore, doping BNN into KNN ceramics can significantly convert the magnetism from diamagnetism to ferromagnetism and the component of x = 0.08 achieves both maximum saturation magnetisation intensity (14 memu/g) and minimum coercive magnetic field (80 Oe). Our findings provide a systematic insight into the bandgap tunability and ferromagnetism induction at room temperature in lead-free perovskite KNN-xBNN ceramics, as well as demonstrate their potential applications in perovskite solar cells and multiferroic devices.  相似文献   

18.
We, herein, present comparative investigations on the Na0.5Bi0.5Cu3Ti4O12 ceramic samples with and without 10 mol% excess of Na/Bi. The samples were prepared by the standard solid‐state reaction technique. The dielectric properties of the sample were investigated in the temperature (93–320 K) and frequency (20 Hz–10 MHz) windows. Three thermally activated dielectric relaxations observed in Na0.5Bi0.5Cu3Ti4O12 with the activation energies of 0.104, 0.267, and 0.365 eV for the low‐, middle‐, and high‐temperature dielectric relaxations, respectively. Only the low‐temperature relaxation was observed in both Na and Bi excessive samples. X‐ray photoemission spectroscopy results revealed the mixed‐valent structures of Cu+/Cu2+ and Ti3+/Ti4+ in Na0.5Bi0.5Cu3Ti4O12 sample, but only Ti3+/Ti4+ in Na and Bi excessive samples. Our results showed that the dielectric properties of the investigated samples are strongly linked with these mixed‐valent structures. The high‐ and low‐temperature relaxations were attributed to be a polaron‐type relaxation due to localized carriers hopping between Cu+/Cu2+ and Ti3+/Ti4+, respectively. The middle‐temperature relaxation is suggested to be a dipole‐type relaxation caused by the defect complex of bismuth and oxygen vacancies.  相似文献   

19.
A recently proposed novel technique, termed “cold sintering process” (CSP), can provide dense ceramic solids at remarkably low temperatures around 180?°C. In a recent work, we successfully obtained dense Na0.5Bi0.5TiO3 ceramics by this method. Bismuth titanate sodium nanoparticles were prepared as the raw material powder by the hydrothermal synthesis route. A hydrothermal precursor solution was used as the transient solvent for cold sintering. Under the combined action of pressure and temperature, the Na0.5Bi0.5TiO3 green body was densified by dissolution-precipitation, and a preliminary densified ceramic sheet was obtained. The amorphous phase in the ceramic sheet was then transformed into a crystalline phase by annealing. Finally, densified Na0.5Bi0.5TiO3 ceramic sheets were obtained, with density of up to 99%, relative permittivity of 681, and dielectric loss of 0.08 at 10?kHz and room temperature. The piezoelectric coefficient d33 of the sample was 52.5?pC/N. The properties of the prepared ceramics were comparable to those of the conventional sintered ceramics.  相似文献   

20.
Multi-layer ceramic capacitor chips prepared from an X7R-formulated BaTiO3 powder and nickel base-metal electrodes were sintered at 1200°C and re-oxidized at 1000°C in low-oxygen partial pressures (pO2). While chips A and B, sintered in pO2≈10−9 and 10−11 atm, respectively, exhibited a typical temperature coefficient of capacitance resembling the X7R characteristics, normal dielectric behavior was retained in chip C sintered at the lowest pO2 of ∼10−13 atm with the Curie point resurged at ∼120°C. The chips were analyzed using X-ray diffractometry, transmission electron microscopy, and energy-dispersive X-ray spectroscopy. The dielectric layer contains a siliceous residual glassy second phase in grain boundaries, triple-grain junctions, and quadruple-grain corners and crystalline second phases in locations scattered inhomogeneously. A crystalline second phase, common to all chips, was determined to hexagonal silicate oxyapatite Ca2Y8Si6O26. Tetragonal Ba2TiSi2O8 was another crystalline second phase specific to chip C. Eutectic liquids have also formed principally among BaO, SiO2, and solid-state additives of CaO and Y2O3 below or at 1200°C to aid the densification of BaTiO3 dielectrics. They were solidified upon cooling to a residual glassy second phase in the ceramics. Sintered BaTiO3 grains of 250–400 nm in both chips A and B contained the characteristic X7R core–shell structure. Those in chip C have grew significantly to 5–8 μm but lost the core–shell completely. With almost all additives in chip C reacting to form second phases, the microstructure is represented by the {111} single and double twins resembling that of undoped BaTiO3 ceramics sintered at low temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号