首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
氧化铝高能球磨时机构力化学效应研究   总被引:8,自引:0,他引:8  
研究了氧化铝在高能球磨过程中机械力化学效应的变化,机械力化学效应因子随球磨时间的变化可分为三个阶段;第一阶段主要是晶粒尺寸减小和显微应变增加同时进行;第二阶段主要是有效温度系数的增加;第三阶段主要是点阵膨胀至饱和。用溶解法比较了球磨前后氧化铝的活性,发现经球磨后,氧化铝在盐酸中的溶解活化能由18kJ/mol降至4kJ/mol,表面活化层增厚。  相似文献   

2.
为获得高能球磨时间和退火温度对TiNi机械合金粉特性的影响机制,采用X射线衍射(XRD)、扫描电子显微镜(SEM)、X射线能谱仪(EDS)、差示扫描量热法(DSC)等分析方法对TiNi合金粉进行了研究。结果表明,机械合金的相成分随着在氩气保护气氛中的球磨时间和退火温度的不同而发生变化。球磨22h的产物是非晶态TiNi合金、Ti的固溶体、Ni的固溶体,球磨27h的产物是非晶态TiNi合金粉和Ni固溶体相,球磨30h发生了明显的固相反应,生成了TiNi、Ni3Ti、Ti3Ni4等物相;在650℃/5h和1000℃/5h下的退火产物都是Ni3Ti、Ti2Ni、TiNi2、TiNi和TiC,但在上述2个退火温度下TiNi并不是主要物相,其中在650℃退火时TiNi的含量明显更低。  相似文献   

3.
High-energy ball milling is successfully used to produce magnesium matrix nanocomposites reinforced with SiC nanoparticles. Changes in morphology and microstructural features of the milled powders were characterized in order to highlight advantages of the mechanical milling process and evaluate the role of the SiC nanoparticles. It was observed that with increasing volume fraction of SiC nanoparticles, a finer nanocomposite powder with more uniform particle size distribution is obtained. A homogeneous distribution of SiC nanoparticles, even up to 10% volume fraction, in magnesium matrix after 25?h milling was confirmed by elemental mapping and TEM results. The analysis of the XRD patterns accompanied by dark-field TEM images revealed that magnesium crystallites refine to fine nanocrystalline sizes after the mechanical milling. The results showed that the crystallite size of the magnesium matrix reduced with increasing SiC nanoparticle content in addition to the induced lattice strain.  相似文献   

4.
高能球磨LaNi5-34%(质量分数)Mg的相组成与热稳定性能   总被引:1,自引:0,他引:1  
蒙冕武  刘心宇  成钧  周怀营 《功能材料》2004,35(2):177-179,182
采用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、差热分析(DTA)等方法研究了高能球磨及热处理等对新型合金LaNi5-34%(质量分数)Mg的相组成、形貌及热稳定性能等的影响。结果表明:经100r/min球磨100h及190r/min球磨100h后,样品由La、Mg、Ni等非晶。微量的晶体Ni和MgNi2相组成,所得粉末的形状大多为规则的球形或近球形,其颗粒直径范围为0.05~33.0μm。球磨样品具有较好的室温活化特性,其最大电化学放电容量为460mAh/g。该样品经763K保温35d后,得到热稳定性较好的具有纳米尺度的MgNi2、Mg2Ni、Mg2NiLa三相组织,其平均晶粒直径为21.3nm。  相似文献   

5.
《Advanced Powder Technology》2021,32(8):3107-3116
Nanocrystalline pure Fe and Fe/MWCNT nanocomposites powders with 0.25, 0.5, 1, and 10 wt% MWCNT contents were synthesized by high-energy ball milling (HEBM). The as-milled powders were cold-compacted and annealed at 400 °C and 600 °C for 1 h in Ar atmosphere. The effect of ball milling on pristine MWCNT and Fe/MWCNT composite powders was also investigated as a function of milling time up to 20 h. The physical properties of MWCNT were imaged by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) before and after HEBM. The structural damage of MWCNT as a function of milling time and MWCNT content was studied using Raman spectroscopy. The structural characterization of MWCNT and Fe/MWCNT composites was conducted by X-ray diffraction (XRD) as a function of milling time, MWCNT content, and annealing temperature. The chemical properties of the synthesized composite powders were investigated using X-ray photoelectron spectroscopy (XPS). The microhardness test was performed to assess the effect of milling time, annealing temperature, and MWCNT content on the mechanical properties. The results indicated that after the ball milling process, the structure of MWCNT was destroyed, and the formation of the amorphous carbon phase was observed, which was confirmed by XRD and TEM analyses. In addition, decreased defect and carbon intensity ratios (ID/IG) were calculated from the Raman results with longer ball milling processes, which is attributed to the destruction of carbon bonds. The XPS results confirmed the presence of FeC bonds as a result of the formation of carbide phases. A fine dispersion of precipitated carbides determined by TEM is found to promote the grain size stability below 100 nm in the nanocrystalline Fe matrix. The results from the micro-hardness tests showed that Orowan particle strengthening resulting from the carbide formation, as well as grain size hardening, is an important contributor to strengthening in Fe/MWCNT composites.  相似文献   

6.
氧化物弥散强化钢(Oxide Dispersion Strengthened Steel, ODS钢),具有优异的力学性能、高温稳定性及抗辐照性能.本文概要地综述了机械合金化、热等静压固化成形、等离子烧结及转角挤压等ODS钢的制备方法,总结了微观组织及结构对ODS钢性能的影响规律及影响机制,又综述了合金元素对ODS钢性能影响的相关研究进展;并对ODS钢在核电领域中的应用及相关研究进展进行了概括,介绍了激光技术在ODS钢制备及加工领域的应用,讨论了ODS钢在核电环境服役过程中存在的主要问题及进一步的研究方向,为核电站的安全运行提供有力的参考依据,对于核电材料的创新发展具有一定的参考作用.  相似文献   

7.
球磨工艺参数对醇水系纳米CeO2悬浮液稳定性的影响   总被引:2,自引:0,他引:2  
使用行星式球磨机分散醇水系纳米CeO2悬浮液,引入沉淀率及其变化量评价其分散稳定性,讨论了球磨时间、球料比、球磨机转速和纳米CeO2质量分数对分散稳定性的影响.通过破碎力打开团聚体的形式来分析球磨时间的影响,从颗粒受作用次数方面来讨论球料比的影响,球磨机转速是划分研磨力和冲击力的主次地位的重要参数;理论Ce2O质量分数...  相似文献   

8.
The present work provides a new insight into the high purity synthesis of zirconium diboride (ZrB2) powders and a method of controlling impurity during the synthesis process. The single phase ZrB2 nano-powder was synthesized by a combined ball milling and carbothermal method using zirconium oxide (ZrO2), boron oxide (B2O3) and carbon (C) as starting materials. The reaction pathway, phase purity, and morphology of the ZrB2 produced are elucidated from X-ray diffraction (XRD) and scanning electron microscopy studies. The details of the impure phases generated during synthesis were obtained from multi-phase Rietveld refinements of XRD data. Experiments revealed that the method of synthesis carried out at 1750?°C involving ZrB2:B2O3:C at a molar ratio of 1:4.5:7.5 could produce highly pure ZrB2 nano-powders of 67?nm average crystallite size. The magnetometry studies on such pure form of ZrB2 nano-powders indicated that both paramagnetic and diamagnetic characteristics coexisted in ZrB2, which could be attributed to its polycrystallinity.  相似文献   

9.
为获得高晶粒细化性能的Al-Ti-B细化剂,本文利用高能球磨法在微米Ti粉上负载纳米TiB2颗粒制备了Ti/TiB2粉末细化剂,并采用热挤压工艺制备了杆状Al-Ti-B细化剂,对比分析了两种细化剂的晶粒细化性能及机理。研究表明:高能球磨可将纳米TiB2颗粒均匀负载分散在微米Ti粉表面,使工业纯铝的平均晶粒尺寸细化至74.6 μm;热挤压则使细化剂致密化,微米Ti粉及纳米TiB2颗粒在铝基体中分布更加均匀,可将工业纯铝的平均晶粒尺寸进一步细化至58.4 μm,获得最佳细化效果,并使细化剂的抗衰退性能提高。机理分析表明,随着细化剂中纳米TiB2颗粒的分散性提高、团聚现象减缓,其在铝熔体中的沉降速度缓慢,对晶粒的形核促进作用、长大抑制作用更充分,是热挤压Al-Ti-B细化剂对工业纯铝有优异晶粒细化效果的关键。  相似文献   

10.
Fully dense and single-phase Ti2AlC ceramic was successfully synthesized by a high energy milling and hot pressing using Ti, C and Al as starting materials. The effects of composition of the initial elemental powders and sintering temperatures on the purity and formation of Ti2AlC were examined. The formation mechanism for the single-phase Ti2AlC ceramics was investigated by XRD in details, which could be described as follows: the most of initial elements reacted to form TiC and Ti–Al intermetallics; the intermetallics and the residual Ti and Al transformed to TiAl phase; and finally the TiAl intermetallics and the TiC reacted to yield Ti2AlC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号