首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
TaB2-based ceramics were hot pressed in low vacuum with addition of 5-10 vol% MoSi2. Temperatures in the range of 1680-1780 °C led to relative density around 90-95%. The hardness was about 18 GPa, the fracture toughness 4.6 MPa m1/2 and the room temperature flexural strength was around 630 MPa, but abruptly decreased above 1200 °C to 220 MPa. The composite containing 10 vol% of MoSi2 was tested in a bottom-up furnace in the temperature range 1200-1700 °C for 30 min. The microstructure appeared covered by a SiO2 layer, whose thickness increased with the temperature, but the bulk remained unaltered up to 1600 °C. At 1700 °C the specimen vaporized. Nanoindentation was employed on the oxidized cross sections in order to detect eventual mechanical properties modification associated to chemical/microstructural change, like formation of Ta-B-O solid solutions.  相似文献   

2.
TaC ceramics with 0.03–0.60?wt% of boron additions were prepared by hot pressing at 2100?°C for 1?h under a pressure of 40?MPa. Effects of boron content on densification, phase composition, microstructure, mechanical properties and oxidation resistance of the TaC ceramics were investigated. When the boron content was 0.12?wt% and above, full density was obtained due to reactions between boron and oxygen impurity at presence of TaC. Minor phases of TaB2 and C were formed in the 0.24 and 0.60?wt% B compositions after gas-out of the oxygen impurity. Microstructure of the TaC ceramics was refined with increasing in boron content. The TaC ceramic with 0.24?wt% of boron showed the best mechanical properties with a Vickers hardness, flexural strength and fracture toughness of 17.7?GPa, 534?MPa and 4.6?MPa?m1/2, respectively. When more boron was added, interfacial bonding of the TaC grains was strengthened causing a decrease in fracture toughness. Oxidation resistance of the TaC ceramics increased with boron content. Particularly, the 0.60?wt% B composition showed a weight gain of 0.0018?g/cm2 after oxidization at 800?°C in air for 3?h.  相似文献   

3.
The mechanical properties and oxidation resistance of the Al2O3-C refractories are of critical importance for iron and steel making processes. However, the evaporation of antioxidants related phases such as Al(g), Si(g), and SiO(g) would deteriorate these properties, especially during high-temperature treatment/application. Therefore, in the present work, a small amount of Ti3AlC2 compared with Al was introduced to overcome these problems. The phase compositions, microstructures, mechanical properties, and oxidation resistance of Ti3AlC2 containing refractories were investigated. The partial oxidation of Ti3AlC2 led to inherited lamellar structures such as Ti3Al1-xC2, TiC, and granular Al2TiO5 phases. The controlled oxidation of Ti3AlC2 and its volume expansion contributed to the compact-structure, thereby limiting the escape of Si and SiO vapors at high temperatures. Consequently, the mechanical properties and oxidation resistance of Ti3AlC2 containing Al2O3-C refractories treated at 1600 ℃ were improved.  相似文献   

4.
Microstructure and mechanical behaviors of the 2D-Cf/ZrB2-SiC composites at RT to 1800 ℃ were studied. It is indicated that the interface structure is critical, which affects the matrix phase composition and cracks deflection path in the intra-bundle area. It subsequently determines the load transmitting, cracks propagation behaviors and the mechanical properties of the composites. Flexural strength of the composites increases slightly at 1000 ℃ by the release of residual stress and self-healing of defects. Partial decomposition and crystallization of polycarbosilane (PCS) derived SiC result in the weakening of the SiC matrix at 1500 ℃. On the other hand, residual carbon reacts with ZrO2 impurity above 1300 ℃. As a result, the matrix turns to porous structure at 1500 ℃, leading to the formation of short micro cracks. At higher temperature of 1800 ℃, quasi-creep mechanical behavior is presented in the composite.  相似文献   

5.
《Ceramics International》2021,47(2):2255-2260
This study firstly developed Hf1-xVxB2 (x = 0, 0.01, 0.02, 0.05) powders, which were derived from borothermal reduction of HfO2 and V2O5 with boron. The results revealed that significantly refined Hf1-xVxB2 powders (0.51 μm) could be obtained by solid solution of VB2, and x ≥ 0.05 was a premise. However, as the content of V-substitution for Hf increased, Hf1-xVxB2 ceramics sintered by spark plasma sintering at 2000 °C only displayed a slight densification improvement, which was attributed to the grain coarsening effect induced by the solid solution of VB2. By incorporating 20 vol% SiC, fully dense Hf1-xVxB2-SiC ceramics were successfully fabricated using the same sintering parameters. Compared with HfB2-SiC ceramics, Hf0.95V0.05B2-20 vol% SiC ceramics exhibited an elevated and comparable value of Vickers hardness (23.64 GPa), but lower fracture toughness (4.09 MPa m1/2).  相似文献   

6.
The mechanical properties, thermal shock resistance, and ablation resistance of nano ZrB2 modified Si2BC3N ceramics were investigated. The results show that ZrB2 stimulated microstructure evolution obviously. Therefore, the maximum strength and fracture toughness reach 559.6 MPa and 6.77 MPa·m1/2, which are improved by 61.0% and 29.4%, respectively. Furthermore, the residual strengths of 10 wt% ZrB2 containing composites tested at 1000 ℃ retain 363.6 MPa, which is much higher than 97.7 MPa of pristine Si2BC3N ceramics. Besides, the ablation resistance of ZrB2 modified Si2BC3N ceramics at 3000 ℃ is enhanced remarkably and the linear and mass ablation rates of ZrB2-10 are only 0.009 mm/s and 1.91 mg/s, respectively. The ablation in the ultra-high temperature zone is totally dominated by the ZrB2 component, and the thermochemical erosion is determined by the oxidation resistance of ZrB2 in the thermal affected zone.  相似文献   

7.
《Ceramics International》2016,42(3):4429-4444
SiBCN ceramics were prepared using various volumes of graphene platelets (GPLs) as nanofiller. The effects of the nanofiller on microstructure, and oxidation and thermal shock resistance of as-sintered ceramics were investigated. The phase composition and microstructures were very similar for all investigated ceramics consisting primarily of β-SiC, BNC and small amounts of α-SiC with relatively homogeneously distributed 5–10 nm thick GPLs in the matrix. For SiBCN ceramics incorporating graphene as nanofiller, a porous oxide layer forms at 1500 °C and the oxidation behavior shows a linear kinetics by thickness measurement method. Gas evolution during heating lead to a passive oxidation behavior and weight loss. Graphene reinforced SiBCN ceramics exhibit thermal shock resistance superior to monoliths of the same material. The graphene distributed in SiBCN matrix can dissipate the energy of crack growth and acts as a stopper to cracks. The toughening mechanisms offered by graphene, including pull-out and bridging appear to aid in ameliorating thermal shock effects. Furthermore, the existence of a dense oxide surface layer retards oxygen diffusion into the inner matrix and heals surface pores and cracks, which also contributes to thermal shock resistance.  相似文献   

8.
A process combining electrophoretic deposition (EPD) with hot pressing (HP) was developed to fabricate continuous carbon fiber-reinforced ZrB2-based composites (Cf/ZrB2-based composites). ZrB2-based ultra-high temperature ceramic (UHTC) particles were uniformly pre-coated on continuous carbon fibers via EPD. Then, the UHTC-coated carbon fibers were stacked and hot pressed to prepare the Cf/ZrB2-based composites. Microstructure observations revealed that almost no micro-pores were found in the inter-bundle and intra-bundle regions of fibers after HP. The flexural strength, fracture toughness and the work of fracture of the Cf/ZrB2-based composite were measured as 199 ± 26 MPa, 6.71 ± 1.29 MPa·m1/2, and 754 ± 58 J/m2, respectively. Based on the observations of non-brittle fracture behavior, fractured morphology and crack propagation, the enhanced fracture properties were mainly attributed to the multiple toughening mechanisms, such as fiber pull-out, fiber bridging, crack deflection and branching along the interfaces.  相似文献   

9.
ZrB2-MeC and ZrB2-19 vol% SiC-MexCy where Me=Cr, Mo, W were obtained by pressureless sintering. The capability to promote densification of ZrB2 and ZrB2-SiC matrices is the highest for WC and lowest for Cr3C2. The interaction between the components results in the formation of new phases, such as MeB (MoB, CrB, WB), a solid solution based on ZrC, and a solid solution based on ZrB2. The addition of Cr3C2 decreases the mechanical properties. On the other hand, the addition of Mo2C or WC to ZrB2-19 vol% SiC composite ceramics leads increased mechanical properties. Long-term oxidation of ceramics at 1500 °C for 50 h showed that, in binary ZrB2-MexCy, a protective oxide scale does not form on the surface thus leading to the destruction of the composite. On the contrary, triple composites showed high oxidation resistance, due to the formation of dense oxide scale on the surface, with ZrB2-SiC-Mo2C displaying the best performance.  相似文献   

10.
《Ceramics International》2017,43(7):5517-5523
The effect of oxidation temperature and time on the microstructures, phase compositions, mechanical properties, and dielectric properties of porous Si3N4 ceramics was investigated in the temperature range from 900 °C to 1300 °C for 1 h, 5 h, and 24 h. The weight gain measured either at lower temperature (900 °C) for long time (24 h) or at higher temperature (1300 °C) for 1 h demonstrated that the porous Si3N4 ceramics were easily oxidized under the current test conditions. Results showed that the amount of open pores, flexural strength, compressive strength, and dielectric constant all decreased with the increase of oxidation temperature independent upon the oxidation time. The oxidation product SiO2 was low-temperature quartz in mild condition (low temperature, short time) and cristobalite in severe condition (high temperature, long time). The existence of cracks on the oxide scale was due to the phase transformation of SiO2 and thermal expansion coefficient mismatch between SiO2 and Si3N4.  相似文献   

11.
Starting from ZrO2 and boron (molar ratio: 1:4), four ZrB2 powders were synthesized by borothermal reduction method, three of which were designed to introduce minor modifications by combining solid solution with Ti and/or water-washing. The sinterability, microstructures, mechanical properties and thermal conductivity were investigated. In comparison with the conventional borothermal reduction, the modified methods offered significant improvement in terms of densification of ZrB2 ceramics, particularly the mixture that included water-washing. Owing to the refined particle size and boron residues, ZrB2 ceramics from the modified borothermal reduction which included water-washing demonstrated nearly full densification, Vickers hardness of 14.0 GPa and thermal conductivity of 82.5 W/mK after spark plasma sintering at 2000 °C for 10 min. It was revealed that the properties of ZrB2 ceramics could be enhanced utilizing the proposed minor modification, starting from the same raw materials and adopting the same sintering conditions.  相似文献   

12.
UHTCs are the most suitable materials for space and hypersonic, however in service they lose their properties owing to oxidation damages. Tailoring composition and microstructure on a multiscale level may maintain structural stability in the sub-layers. Sintering of ZrB2-MoSi2 ceramics at 1900–2150?°C results in microstructures characterized by partial or complete (Zr,Mo)B2 solid solutions. This has notable impacts on the performance of the composites subjected to cyclic oxidation at 1650?°C. Coupled XRD, SEM and TEM analyses pointed out the formation of a unique interpenetrating microstructure, where ZrO2 micro-grains encase stable nano-sized MoB particles. This architecture manifested its suitability during repeated oxidation limiting the effect of oxygen attack to some microns thickness, due to diffused Mo which prevented turbulence and bursting phenomena on the outer glass.This study elucidates the processing conditions that lead to the development of prominent materials for application in new generation thermal protection systems for reusable space components.  相似文献   

13.
The oxidative degradation of ZrB2 ceramics is the main challenge for its extensive application under high temperature condition. Here, we report an effective method for co-doping suitable compounds into ZrB2 in order to significantly improve its anti-oxidation performance. The incorporation of SiC and WC into ZrB2 matrix is achieved using spark plasma sintering (SPS) at 1800?°C. The oxidation behavior of ZrB2-based ceramics is investigated in the temperature range of 1000?°C–1600?°C. The oxidation resistance of single SiC-doped ZrB2 ceramics is improved due to the formation of silica layer on the surface of the ceramics. As for the WC-doped ZrB2, a dense ZrO2 layer is formed which enhances the oxidation resistance. Notably, the SiC and WC co-doped ZrB2 ceramics with relative density of almost 100% exhibit the lowest oxidation weight gain in the process of oxidation treatment. Consequently, the co-doped ZrB2 ceramics have the highest oxidation resistance among all the samples.  相似文献   

14.
In this work, the influence of heating-cooling rates on the microstructure of ultra-high temperature ceramics (UHTCs) during oxidation was firstly reported. Four different kinds of processes (low-heating and low-cooling rates, low-heating and high-cooling rates, high-heating and low-cooling rates, high-heating and high-cooling rates) combined with static oxidation at 1500 °C were applied on ZrB2-SiC-WB composite coatings. The results showed that the oxide layers of the samples presented different microstructure characters under different heating-cooling modes. A relatively thick liquid layer with obvious bubble phenomenon was generated under the high-heating rate, while a thin liquid layer without bubbles was formed under the low-heating rate. Certain amount of sheet B2O3 crystals with large sizes were formed under the high-cooling rate, while did not for the low-cooling rate. The formation mechanisms of these unique microstructures were analyzed and the influence of heating and cooling rates was explained.  相似文献   

15.
Ta4HfC5 powder was synthesized using TaCl5, HfCl4 and phenolic resin as raw materials. Then, Ta4HfC5–10 vol% MoSi2 ceramics and Ta4HfC5–10 vol% MoSi2 with different proportions of ZrB2 (10 – 30 vol%) ceramics were sintered by spark plasma sintering. Zr atoms substituted Ta and Hf atoms in Ta4HfC5 during the sintering process at 2000 °C. The sintering behavior and microstructure evolution upon the ceramics are discussed. The mechanical properties of the composites were improved compared to the pure Ta4HfC5 ceramics. The hardness of Ta4HfC5–MoSi2 with 30 vol% ZrB2 increased from around 10 GPa to almost 13 GPa, the flexural strength increased from around 245–435 MPa, and the fracture toughness increased from 2.56 ± 0.12 MPa?m1/2 to 4.46 ± 0.20 MPa?m1/2.  相似文献   

16.
17.
ZrC ceramics containing 30 vol% SiC-ZrB2 were produced by high-energy ball milling and reactive hot pressing. The effects of ZrB2 content on the densification, microstructure, and mechanical properties of ceramics were investigated. Fully dense ceramics were achieved as ZrB2 content increased to 10 and 15 vol%. The addition of ZrB2 suppressed grain growth and promoted dispersion of the SiC particles, resulting in fine and homogeneous microstructures. Vickers hardness increased from 23.0 ± 0.5 GPa to 23.9 ± 0.5 GPa and Young’s modulus increased from 430 ± 3 GPa to 455 ± 3 GPa as ZrB2 content increased from 0 to 15 vol%. The increases were attributed to a combination of the higher relative density of ceramics with higher ZrB2 content and the higher Young’s modulus and hardness of ZrB2 compared to ZrC. Indentation fracture toughness increased from 2.6 ± 0.2 MPa⋅m1/2 to 3.3 ± 0.1 MPa⋅m1/2 as ZrB2 content increased from 0 to 15 vol% due to the increase in crack deflection by the uniformly dispersed SiC particles. Compared to binary ZrC-SiC ceramics, ternary ZrC-SiC-ZrB2 ceramics with finer microstructure and higher relative densities were achieved by the addition of ZrB2 particles.  相似文献   

18.
In this study, Ti(C,N)-WC-NbC-ZrC-Co-Ni cermets were prepared by sintering-hip at 1450?°C. The effect of ZrC addition on the microstructure, mechanical properties, oxidation resistance and wear resistance of Ti(C,N)-WC-NbC-Co-Ni cermets were explored in detail. The results show that ZrC addition plays the role of inhibitor in the dissolution–reprecipitation process, which can increase the wear-resistant carbide phases and inhibit the precipitation of brittle (Ti,W,Nb)(C,N) rim phase. Therefore, the core-rim structures are refined and the Nb content in binder increases, which enhance mechanical properties and oxidation resistance of cermets. With the increasing ZrC content, the oxidation resistance of cermets can be improved constantly, while the transverse rupture strength, fracture toughness and wear resistance of these cermets increase first and then decrease. The cermet with 1?wt% ZrC exhibits the transverse rupture strength of 2549?MPa and highest fracture toughness of 13.0?MPa?m1/2. The oxidation weight gain of cermets containing 5?wt% ZrC after holding 100?h at 750?°C in air is 2.8?×?10?6 g?mm?2, which is only 22% of that in the cermets without ZrC addition.  相似文献   

19.
Phase composition, microstructures, and mechanical properties of silicon nitride (Si3N4) ceramics were investigated with ZrB2 and B additives. Results showed that the addition of ZrB2 and/or B in 2.5 and 5 vol.% promoted the phase transformation of α- to β-Si3N4 phase and the formation of bimodal microstructure after hot-pressing at 1500 °C. With the introduction of 2.5 vol.% (ZrB2-B) binary additives, fracture toughness and strength of Si3N4 ceramics increased significantly from 5.2 MPa m1/2 and 384 MPa to 7.2 MPa m1/2 and 675 MPa, respectively. However, the hardness of ceramics decreased slightly from 23.5 GPa to 21.3 GPa, which was still higher than typical values reported on Si3N4 ceramics (15˜17 GPa).  相似文献   

20.
研究了O'-Sialon-ZrO2复合材料的显微结构与力学性能的关系。结果表明,O'-Sialon形成连续网络编织状结构。ZrO2加入量较少时充当填充结构骨架的作用;ZrO2加入量增多时(至40%),会有更多的ZrO2形成聚集体。随着ZrO2引入量的增加,材料的常温抗折强度提高,但高温抗折强度下降。O'-Sialon的编织状结构可能阻碍晶界滑移。这种复合材料的高温抗折强度在1400℃为112~173MPa。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号