首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Dense K0.5Bi0.5TiO3 (KBT) lead-free ceramics were prepared by conventional solid reaction route. Their temperature behavior (up to 600 °C) was investigated by X-ray diffraction, DSC, dielectric spectroscopy and electric field-polarization technique. The first temperature dependent Raman scattering studies were also performed. X-ray and Raman scattering results show that samples exhibit a single perovskite structure with cubic symmetry at temperatures higher than approximately 400 °C and with coexistence of the cubic and tetragonal phases below this temperature. Two structural phase transitions between tetragonal phases in temperature range 200–225 °C and between tetragonal and cubic ones near 400 °C are observed. The content of the tetragonal phase increases with decreasing temperature and at room temperature it reaches more than 70%. Temperature- dependent P-E loops and pyroelectric data revealed a polar behavior in KBT up to about 400 °C, which means that the intermediate phase (~270–380 °C) is rather ferroelectric than antiferroelectric.  相似文献   

2.
《Ceramics International》2017,43(7):5505-5508
The effects of secondary phases on ferroelectric properties of Bi0.5Na0.5TiO3 (BNT) have been studied. Ceramic powders were prepared by solid state reaction employing different sintering temperatures and characterized by X-ray diffraction (XRD), Scanning Electron Microscopy and impedance spectroscopy. The perovskite structure was detected by XRD; together with small peaks corresponding to a secondary phase assigned to the Na2Ti6O13-based phase in calcined powders. In addition, morphology and the content of the secondary phase were modified by the sintering temperatures, affecting the ferroelectric properties, and ac and dc conductivities. We believe that our results can benefit not only the understanding of BNT ceramics, but also expand the range of applications.  相似文献   

3.
《Ceramics International》2016,42(14):15664-15670
Sodium bismuth titanate (BNT) nanopowder of molar composition 50/50 (Na0.5Bi0.5TiO3) was prepared by a sol-gel processing method. The structure and microstructure of the precursor gel as well as the ferroelectric, pyroelectric, dielectric and piezoelectric properties of the BNT were studied. BNT crystallized in the rhombohedra perovskites structure Na0.5Bi0.5TiO3 was obtained from the precursor gel by heating at 700 °C for 2 h in air. The BNT ceramic at 1100 °C sintering temperature present high crystallinity, good dielectric properties at 1 kHz (ε′=885, tan δ=0.03, Tc=370 °C), piezoelectric properties (k33=0.39, c33=105 GPa, e33=12.6 C/m2, d33=120 pC/N), high remnant polarization (Pr=47 μC/cm2) and pyroelectric coefficient (p=707 μC/m2 K) and low coercive field (Ec=55 kV/cm). Hence, the BNT prepared by sol-gel method could be used for silicon based memory device application where a low synthesis temperature is a key requirement.  相似文献   

4.
《Ceramics International》2020,46(4):4454-4461
The pseudo-first-order phase transition in 0.94Bi0.5Na0.5TiO3-0.06BaTiO3 ceramics leads to a sharp increase in temperature change (ΔT) in the vicinity of the ferroelectric-to-relaxor transition temperature TFR (~100 °C) [Appl. Phys. Lett. 110 (2017) 182904]. In this study, we add the 0.78Bi0.5Na0.5TiO3-0.06BaTiO3-0.16(Sr0.7Bi0.2)TiO3 relaxor phase to the 0.94Bi0.5Na0.5TiO3-0.06BaTiO3 ferroelectric matrix to tune its electrocaloric effect. The results show that the addition of the relaxor phase plays a vital role in phase and local-structure evolution. A transition occurs between the ferroelectric and ergodic relaxor phases when the mass fraction of the latter increases to 30% (x = 0.3), as verified by X-ray diffraction analysis, Raman spectroscopy, and polarization-electric field (P-E) hysteresis loops. Furthermore, addition of the relaxor phase reduces the TFR from 76 °C at x = 0.1–55 °C at x = 0.2; however, this transition disappears at x = 0.3 and 0.4 composite. In-situ piezo-force microscopy (PFM) images illustrate that domains can be written into x = 0.1 and 0.2 ceramics with a valley in the piezoresponse curves. Increasing the temperature agitates the domain arrangement and decreases the contrast for PFM images; this indicates a gradual phase transition in the composite. The temperature corresponding to maximum ΔT exhibits a downward shift (0.58 K at 80 °C for x = 0.1 and 0.5 K at 65 °C for x = 0.2), while the temperature-ΔT curves are flat when x = 0.3 and 0.4. Moreover, the maximum ΔT shows a decrease with an increase in the relaxor phase content; this is believed to be related to a decrease in the latent heat due to a pseudo-first-order to second-order transition. Thus, we suggest that the incorporation of a relaxor phase into ferroelectric matrices is an effective technique to tune their electrocaloric effect and improve the thermal stability of ceramic composites.  相似文献   

5.
Lead-free piezoelectric ceramics, (1?x)Na0.5Bi0.5TiO3-xKNbO3 (NBT-xKN), with x?=?0.02–0.08 were fabricated by solid-state reaction and sintering. The crystal structures and dielectric properties were measured for different KN contents. All compositions in the unpoled, as-sintered state were found to be single-phase pseudo-cubic. However, typical ferroelectric behaviour, with well-saturated polarisation-electric field hysteresis loops, was observed for certain compositions at high electric field levels. It is shown using high-energy synchrotron X-ray diffraction that the application of the electric field induced an irreversible structural transformation from the nano-polar pseudo-cubic phase to a ferroelectric rhombohedral phase. The changes in lattice elastic strain and crystallographic texture of a poled NBT-0.02KN specimen as a function of the grain orientation, ψ, conform well to those expected for a conventional rhombohedrally distorted perovskite ferroelectric ceramic. The dielectric permittivity-temperature relationships for all compositions exhibit two transition temperatures and a frequency-dependent behaviour that is typical of a relaxor ferroelectric. The transition temperatures and grain size decrease with the increasing KN content.  相似文献   

6.
Lead-free 0.94NBT-0.06BT-xLa ceramics at x = 0.0–1.0 (%) were synthesized by a conventional solid-state route. XRD shows that the compositions are at a morphotropic phase boundary where rhombohedral and tetragonal phases coexist. With increasing La3+ content pyroelectric coefficient (p) and figures of merits greatly increase; however, the depolarization temperature (Td) decreases. p is 7.24 × 10−4C m−2 °C−1 at RT at x = 0.5% and 105.4 × 10−4C.m−2 °C−1 at Td at x = 0.2%. Fi and Fv show improvements at RT from 1.12 (x = 0%) to 2.65 (x10 −10 m v−1) (x = 0.5%) and from 0.021 to 0.048 (m2.C−1) respectively. Fi and Fv show a huge increase to 37.6 × 10−10 m v−1 and 0.56 m2 C−1 respectively at Td at x = 0.2%. FC shows values of 2.10, 2.89, and 2.98 (x10−9C cm−2 °C−1) at RT at 33, 100 and 1000 (Hz) respectively. Giant pyroelectric properties make NBT-0.06BT-xLa at x = 0.2% and 0.5% promising materials for many pyroelectric applications.  相似文献   

7.
The morphotropic composition of the lead-free solid solution between Na0.5Bi0.5TiO3 and BaTiO3 (0.94 Na0.5Bi0.5TiO3-0.06 BaTiO3 or NBT-6BT) is of particular interest for the next generation of high-temperature capacitors but remains plagued by the diversity of dielectric properties reported in the literature. In order to explain the apparent inconsistencies among the reported dielectric properties of NBT-6BT, we examine the influence of stoichiometry, phase separation, and metallization method. We show that the nominal stoichiometry has a crucial effect, since increasing the nominal Na/Bi ratio increases conductivity and dielectric losses (tan δ). It also increases the real part of the permittivity (ε’) and the frequency dispersion of both ε’ and tan δ, thereby altering the shape of the evolution with temperature of the dielectric properties. Moreover it increases the depolarization temperature (Td) and decreases the temperature of maximum permittivity (Tm). Phase separation also occurs during the synthesis of NBT-6BT as Na evaporation leads to the formation of secondary Ba-containing phases. We report that these phases can have a positive impact on the dielectric properties: a moderate volume fraction (2.5 to 3.0%) and average grain surface (0.9 to 3.0 µm2) of these secondary Ba-containing phases increase the relative permittivity, decrease the dielectric losses, and increase the insulation resistance. We also show that the metallization method impacts the dielectric properties and therefore may contribute to the differences between various reports. The dielectric properties of NBT-6BT samples are measured during successive heating/cooling cycles and reveal that the permittivity value is lower during the first heating when silver paste, even cured, is used. These three components contribute to explaining the diversity of the reported dielectric properties of NBT-6BT.  相似文献   

8.
Bi4Ti3O12 (BiT) platelet incorporated 0.36BiScO3-0.64PbTiO3 (BS-PT) thick films were successfully developed for high temperature piezoelectric device applications. Their microstructure and ferroelectric and piezoelectric properties were systematically investigated to demonstrate the effect of the BiT template. It was found that the incorporation of BiT template was not responsible for textured grain growth of the BS-PT thick films; however, it could result in grain growth and densification of the BS-PT thick films by optimizing the sintering temperature and amount of BiT template. In particular, a 4 wt% BiT-incorporated BS-PT thick film sintered at 1000°C exhibited a pure perovskite structure and excellent piezoelectric properties of d33 (440 pC/N) and kp (53%), despite the presence of micro-pores caused by molten BiT. The BS-PT thick film, exhibiting good ferroelectric characteristics of Pr of 39.4 μC/cm2 and Ec of 3.0 kV/mm at 1 kHz, also had an extremely high Tc of approximately 402°C. This implies that the BiT platelet incorporated BS-PT thick film is applicable for high temperature piezoelectric devices.  相似文献   

9.
Developing Na0.5Bi0.5TiO3-based magnetoelectric (ME) coupling composites with higher depolarization temperature is highly valuable for the environment-friendly smart electronic devices. We have developed a new kind of 0-3 type 0.94Na0.5Bi0.5TiO3-0.06BaTiO3:xCoFe2O4 (NBTBT:xCFO, x = 0, 0.1, 0.2, 0.3) composite ceramics with a deferred depolarization temperature, together with an additional strong ME coupling of 9.2 mV/cm·Oe for the NBTBT:0.2CFO. The basic structure, ferroelectric/ferromagnetic properties, and the depolarization temperature of the NBTBT:xCFO composite ceramics were investigated. It was found that an enhancement of depolarization temperature (>25 °C) was obtained in these 0-3 type composites relative to the pure NBTBT ones (115 °C vs 90 °C). The mechanism of the enhanced depolarization temperature of the composites is discussed. The present results demonstrate that NBTBT:xCFO composites have great potential for ME devices.  相似文献   

10.
《Ceramics International》2023,49(2):1865-1873
Dielectric, ferroelectric, and piezoelectric properties of 0.36(Bi1-xSmx)ScO3-0.64PbTiO3 (BSPT-xSm) ceramics were investigated to assess effects of Sm-substitution on 0.36BiScO3-0.64PbTiO3 for high temperature piezoelectric device application. Optimal sintering was achieved at 1200°C when the BSPT-xSm ceramics were fully densified and crystallized with a perovskite structure without any secondary phase. The substitution of Bi3+ with Sm resulted in degradation of rhombohedral side in BSPT-xSm ceramics having morphotropic phase boundary. In addition, variations of grain size and ferroelectric behavior after Sm-substitution were insignificant. However, dielectric constant (εT33/ε0) was significantly enhanced with an increasing of amount of Sm to 5%. Although a slight decrease of relative density in case of x exceeding 3% led to deterioration of piezoelectric values of d33, kp, and d33*, the BSPT-3%Sm ceramic exhibited excellent values of d33 of 628 pC/N, kp of 62.4%, and d33* of 718 pm/V at 4.5 kV/mm, along with a high ferroelectric transition temperature of 421°C. The highly increased diffusion coefficient of 1.909 also implies that the Sm-substitution contributed to relaxor-like ferroelectric behavior of BSPT ceramics.  相似文献   

11.
(Bi1/2Na1/2)TiO3-based materials have received much attention due to large electro-strain and high piezoelectric constant (d33), but the tough issue is that the existence of inherent depolarization temperature (Td) limits the temperature stability and application temperature range. Previously, reports about the formation of BNT/oxide (i.e., ZnO, Al2O3) composites thought that Td can be deferred to a higher temperature and then thermal depolarization improves. However, the deferred Td of BNT/oxide composites is limited, accompanied by a low d33. Here, we design the {[Bi0.5(Na0.8K0.2)0.5]1-xPbx}TiO3 ceramics, leading to a big shift of Td from 77 ℃ to 390 ℃. Large d33 (140 pC/N) and high Td (∼263 ℃) can be simultaneously achieved for the sample with Pb=0.05, and Td could be further deferred higher (390 ℃) for Pb=0.20. The off-centre displacement of Pb induced by Pb-O hybridization in the PbO12 polyhedron and ferroelectric order stabilized by the addition of Pb can provide the driving force to strengthen the ferroelectric order, and then promote the thermal stability.  相似文献   

12.
《应用陶瓷进展》2013,112(7):435-442
Nb-doped 0.90BaTiO3-0.10(Bi0.5Na0.5)TiO3 temperature-insensitive ceramics with novel core-shell structure were sintered at low temperature by the conventional solid-state reaction method. The beneficial role of Nb in facilitating the formation of core-shell structure because of chemical inhomogeneity is verified, which is responsible for the weak temperature dependence of dielectric properties. Temperature dependence of permittivity measured at different frequencies shows high frequency dispersion at low temperature, while without relaxor characteristic at high temperature. The Vogel–Fulcher model was adopted to study the relaxor behaviour of Nb-doped 0.90BaTiO3-0.10(Bi0.5Na0.5)TiO3 ceramics at low temperature. The samples with an addition of 1.5?mol% Nb2O5 provide a temperature coefficient of capacitance meeting the requirements of the X9R characteristic, and result exhibits an optimum dielectric behaviour of εr ~1900, tanδ ~1.8% at room temperature, making the material a promising candidate for high temperature applications.  相似文献   

13.
《Ceramics International》2017,43(16):13193-13198
B-site modified Bi3.25La0.75Ti3-xTaxO12 ceramics were prepared by the conventional solid-state reaction method. The influence of Ta2O5 on microstructure and electric properties of the ceramics was investigated. The results demonstrated that Ta5+ ions were dissolved into the perovskite lattice and homogeneously distributed in the matrix without forming any minority phase. The conduction mechanism and dielectric response behavior were transformed with Ta substation, which is triggered by varied structural distortion characteristics and defect diploes. The Curie temperature decreased gradually with increasing Ta content and a relaxor-like behavior was observed for x = 0.09 sample. The internal bias field is decreased with Ta doping, because the substitution of Ta5+ at B-site contributes to release the involved oxygen vacancies in defect diploes. Moreover, further increasing Ta content causes a reduction in the oxygen vacancies located at lattice misfits, resulting in a decrease of coercive fields. An improved ferroelectric properties were obtained for x = 0.09 sample with a relatively lower coercive field and a larger spontaneous polarization.  相似文献   

14.
(Bi0.5Na0.5)TiO3 based ferroelectric lead-free thin films have great potential for modern micro-devices. However, the multicomponent feature and volatile nature of Bi/Na makes the achievement of high quality films challenging. In this work, the morphotropic phase boundary composition, 0.94(Bi0.5Na0.5)TiO3-0.06BaTiO3 thin films were successfully prepared by CSD method. Dense films with low dielectric loss and low leakage current density were obtained. A well-defined polarization hysteresis loop with a high remnant polarization was observed in the thin films. Moreover, the polarization behavior of the film at original state, under electric field and upon heating was investigated by PFM. A self-polarization and asymmetric domain switching behavior were observed. High temperature induced depolarization and the self-polarization recovered upon cooling. The thin films with good quality show a promising potential for the application in electrical devices, and the in-depth investigation of the polarization behavior improves the understanding of ferroelectric and piezoelectric properties of thin films.  相似文献   

15.
《Ceramics International》2016,42(16):18352-18356
Fe-doped (Pb0.99Nb0.02)[(Zr0.70Sn0.30)0.52Ti0.48]0.98O3 (PNZST) ceramics were prepared via conventional solid state reaction method, and the effect of Fe doping on their structural and electrical properties was investigated in detail. Results showed that Fe3+ cations could dissolve into readily the B-sites of perovskite structure for the PNZST ceramics with the less amount of Fe content (≤0.8 wt%), resulting in the full densification after sintered at 1300 °C. Meanwhile, Fe doping caused a structure transform from the tetragonal to the rhombohedral. The better electric properties for PNZST ceramic with 0.6 wt% Fe content were obtained, i.e. piezoelectric constant d33=380 pC/N, electromechanical coupling factor kp=0.57, mechanical quality factor Qm=225, dielectric constant εr=1190, loss tangent tan δ=0.007 and curie temperature Tc=318 °C.  相似文献   

16.
Porous 0.8Na0.5Bi0.5TiO3-0.2K0.5Bi0.5TiO3 ceramics are fabricated via the pore-forming agent method with polymethyl methacrylate (PMMA) and stearic acid (SA) as pore forming agents, and microstructure observations demonstrate that the porosity, pore shape, and pore sizes can be controlled by the synthesis technology. The dielectric properties of porous ceramics are found not only correlated to the pore-matrix composite model, but also have a significant grain-size effect. Based on the Zener Theory, pining forces exerted by pores on the grain boundary are calculated, to explain the shape effect of pores on grain boundary migration. A phase-field simulation is carried out to investigate pore shape effect on the grain size regulation in porous polycrystalline, and simulation results are in good agreements with experiential results as well as theoretical calculations. Thus, a modified equation is proposed to predict the effective permittivity of the porous piezoelectric ceramics by considering effects of porosity, pore shape and grain size.  相似文献   

17.
《Ceramics International》2022,48(14):20251-20259
In this study, it is reported that various properties can be selectively derived in a pure (K0.5Na0.5)NbO3, KNN ceramics through optimizing the sintering temperature by the conventional sintering method. High piezoelectric, ferroelectric, and dielectric properties such as d33 = 127 pC/N, Pr = 31 μC/cm2, and εr = 767 are obtained at the sintering temperature of 1100 °C. On the contrary, the specimen sintered at 1130 °C does not show high piezoelectric and ferroelectric properties, but it is translucent with a transmittance of 22% and 57% at the wavelength of 800 and 1600 nm respectively and shows a very high dielectric constant εr of 881. The origin of the high piezoelectric constant owes to large remanent polarization and dielectric constant, and dense microstructure with uniform distribution of large grains with the conjunction of relatively large crystal anisotropy. On the other hand, dense microstructure with almost no porosity, highly compacted grain boundaries, uniform distribution of grains, and relatively low crystalline anisotropy are responsible for the translucency and large dielectric constant of the ceramic specimens. This study demonstrates that the lead-free KNN ceramic has the potential to show multiple noteworthy properties such as piezoelectric, ferroelectric, dielectric, and transparent properties. This work provides a pure KNN ceramic simultaneously with high piezoelectric and transparent characteristics prepared only by using the conventional sintering method at a moderate sintering temperature for the first time in the literature.  相似文献   

18.
The bismuth layer-structured Na0.5Bi4.5-xPrxTi4O15 (x?=?0, 0.1, 0.2, 0.3, 0.4, and 0.5) (NBT-xPr3+) ceramics were fabricated using the traditional solid reaction process. The effect of different Pr3+ contents on dielectric, ferroelectric and piezoelectric properties of Na0.5Bi4.5Ti4O15 ceramics were investigated. The grain size of Pr3+-doping ceramics was found to be smaller than that of pure one, the maximum dielectric constant and Curie temperature Tc gradually decreased with increasing Pr3+ contents, and the dielectric loss decreased at high temperature by Pr3+-doping. Moreover, the activation energy (Ea), resistivity (Z’), remanent polarization (2Pr) and piezoelectric constant (d33) increased by Pr3+-doping. The NBT-xPr3+ ceramics with x?=?0.3 achieved the optimal properties with the maximum dielectric constant of 1109.18, minimum loss of 0.00822 (250?kHz), Ea of 1.122?eV, Z’ of 7.9?kΩ?cm (725 ºC), d33 of 18 pC/N, 2Pr of 12.04 μC/cm2. The enhancement was due to the addition of Pr3+ which suppressed the decreasing of resistivity at high temperature and made it possible for NBT-xPr3+ ceramics to be poled in perpendicular direction, implying that it is a great improvement for Na0.5Bi4.5Ti4O15 ceramics in electrical properties.  相似文献   

19.
20.
A series of (1-x)(0.65BaTiO3-0.35Bi0.5Na0.5TiO3)-xNa0.73Bi0.09NbO3 ((1-x)BBNT-xNBN) (x = 0–0.14) ceramics were designed and fabricated using the conventional solid-state sintering method. The microstructure, dielectric property, relaxor behavior and energy storage property were systematically investigated. X-ray diffraction results reveal a pure perovskite structure and dielectric measurements exhibit a relaxor behavior for the (1-x)BBNT-xNBN ceramics. The slim polarization electric field (P-E) loops were observed in the samples with x  0.02 and the addition of Na0.73Bi0.09NbO3 (NBN) could decrease the remnant polarization (Pr) of the (1-x)BBNT-xNBN ceramics obviously. The sample with x = 0.08 exhibits the highest energy storage density of 1.70 J/cm3 and the energy storage efficiency of 82% at 172 kV/cm owing to its submicron grain size and high relative density. These results show that the (1-x)BBNT-xNBN ceramics may be promising lead-free materials for high energy storage density capacitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号