首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this study, the silica network and functionalized graphene oxide (GO) were incorporated into the epoxy coating systems, which was aimed to improve the thermal property and corrosion resistance of epoxy coatings. First, tetraethyl orthosilicate (TEOS) oligomers and epoxy hybrid was fabricated through sol–gel method. Then the (3-aminopropyl) triethoxysilane (APTES) modified graphene oxide (FGO) was added into the epoxy hybrid composite to obtain anticorrosion coatings. Fourier transform infrared spectroscopy, thermogravimetric analysis (TGA), Raman spectrum, and X-ray photoelectron spectrum were conducted to evaluate the structural information of GO and APTES modified GO nanosheets. The results indicated that the APTES successfully grafted onto the surface of GO sheets. Besides, TGA curves, electrochemical measurements and salt spray test were also carried out to characterize the thermal performance and corrosion resistance of GO based epoxy coatings. The TGA results revealed that the thermal performance of epoxy coating containing silica network and FGO nanofiller (ES/FGO) was significantly strengthened compared to pure epoxy. The initial degradation temperature of epoxy coating was increased from 300 to 343.7°C after incorporation of silica component and FGO. The EIS measurements demonstrated that the impedance modulus of ES/FGO was significantly higher than neat epoxy, which indicated that the corrosion resistance of epoxy was substantially strengthened after introduction of silica component and FGO. The corrosion rate and inhibition efficiency of epoxy composite coatings were also shifted from 1.237 × 10−7 mm/year and 76.6% (for neat epoxy) to 1.870 × 10−9 mm/year and 99.6% (for ES/FGO), respectively. The salt spray test also revealed that the silica and FGO can improve the corrosion resistance of epoxy coating. Additionally, the dispersion of GO sheets was also enhanced after the modification of APTES siloxane.  相似文献   

2.
Application of anticorrosive coating on metal surface enhances the durability of the metal. Anticorrosion can be achieved by the incorporation of conducting nanomaterials like polyaniline or its nanohybrid to a coating material. Thus, bio-based epoxy nanocomposites were fabricated by the in situ method using polyaniline nanofiber-carbon dot nanohybrid (0.50 and 1 wt % with respect to epoxy), as the anticorrosive material. The epoxy resin was obtained by polycondensation of bisphenol-A, sorbitol, and monoglyceride of castor oil (mole ratio of 16:3:1), as hydroxyl compounds with epichlorohydrin (1:3 equivalent, hydroxyl:epichlorohydrin). The morphological analyses of the nanocomposites revealed the uniform dispersion and good compatibility of the nanohybrid in the epoxy matrix. The thermosets demonstrated good tensile strength (30 MPa), elongation at break (45%), scratch resistance (>10 kg) and impact resistance (14.75 kJ/m), good thermal stability (above 250°C), and chemical resistance. The anticorrosion study of the nanocomposites showed excellent corrosion protection efficiency (corrosion rate: 5.68 × 10−3 mils per year) in 3.5 wt % NaCl compared to the pristine epoxy system. Therefore, this bio-based thermosetting epoxy nanocomposite was demonstrated as efficient anticorrosive material. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47744.  相似文献   

3.
Titanium oxide nanotubes (TiO2 nanotube, TNT) were prepared from hydrothermal treatment of TiO2 particles in NaOH at 140 °C, followed by neutralization with HCl. The structure of the nanotubes was characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD). TNT synthesized under the optimal conditions with approximately 10–20 nm wide, and several (100–200) of nanometers long. TNT is used as white pigment for two component epoxy-based coating. Ultrasonication followed by mechanical stirring has been applied for dispersion of TNT powder in an epoxy matrix. The resulting perfect dispersion of TNT particles in epoxy coating revealed by scanning electron microscopy (SEM) ensured white particles embedded in the epoxy matrix. The effects of TNT particle concentrations on thermal, mechanical and corrosion resistance of epoxy coatings composite were studied and compared to that of submicron particles. It was found that the TNT significantly enhances the heat resistance, the thermal stability and the glass transition temperature of epoxy resin. Epoxy/TNT nanocomposite with 5.0 wt.% TNT shows the highest thermal stability, the temperature of 50% weight loss increased from 365 to 378 °C, the amount of char yields or residues at 600 °C increased from 7.13 to 13.50 wt.%, respectively to 1.0 and 5.0 wt.% TNT. The glass transition temperature (Tg) increased from 182 to 220 °C too. The mechanical properties and corrosion resistance of epoxy resin greatly improved by using reinforcing TNT and this improvement increases with increase TNT wt.%.  相似文献   

4.
Epoxy-based nanocomposites reinforced with nonfunctionalized porous graphene (NPG), carboxylated porous graphene (CNPG), and amine-functionalized porous graphene (ANPG) were investigated with regard to mechanical properties, thermal stability, and electrical conductivity. Nanomaterials were added to the epoxy matrix in varying contents of 0.5, 1, and 2 wt %. Generally, mechanical properties were improved as a result of introducing nanomaterials into the epoxy resin. However, the amelioration of toughness was only observed in functionalized NPGs/epoxy nanocomposites. Field emission scanning electron microscopy images showed that functionalized nanomaterials induced a rougher fracture surface compared to the neat epoxy. Dynamic mechanical analysis along with differential scanning calorimetry confirmed an increment in the glass-transition temperature (Tg) of the reinforced nanocomposites. Also, they proved that functionalization made the epoxy network tougher and more flexible. The electrical conductivity and thermal stability of the epoxy resin were also improved when loaded with nanomaterials. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47475.  相似文献   

5.
将改性后石墨烯粉末通过球磨机均匀分散于环氧树脂涂料中以提高7A52铝合金表面有机涂层的耐腐蚀性能。通过接触角、吸水率、红外光谱、开路电位及交流阻抗测试,分别评价改性石墨烯环氧树脂涂层的表面润湿性、耐水性能、耐蚀性,并通过扫描电子显微镜对石墨烯粉末及环氧树脂涂层断面形貌进行分析。结果表明:环氧树脂涂料中添加0.8%改性石墨烯粉体后,接触角由86.77°增加至101.43°,提高16%,表面由亲水性变为疏水性,涂层的耐水性提高,吸水率降低0.21%。0.8%改性石墨烯涂层在3.5%NaCl溶液中稳定后的开路电位较未添加石墨烯涂层增加0.14 V,阻抗值高出未添加改性石墨烯涂层半个数量级,且电荷转移电阻Rct比未添加改性石墨烯涂层Rct高出1.78×10 7 Ω/cm 2,涂层的耐腐蚀性大大提高。红外光谱表明,改性石墨烯并未改变环氧树脂结构,涂层中的改性石墨烯是影响涂层性能发生变化的重要因素。研究表明改性石墨烯的加入可以有效提高涂层的耐蚀性,并且当改性石墨烯添加量为0.8%时,涂层具有优异的耐腐蚀性能。  相似文献   

6.
总结了环氧树脂在涂料中的应用及存在的不足,综述了石墨烯与环氧树脂复合涂料在热、电、耐磨增韧以及防腐等方面性能特征,阐述了石墨烯与环氧树脂复合涂料中存在的问题,提出了石墨烯功能化利于改善石墨烯/环氧树脂性能的途径,展望了功能化石墨烯环氧树脂涂料的发展前景。  相似文献   

7.
The aim of this research was to improve the corrosion resistance of metal surfaces with polymer coatings. Both graphene and halloysite nanotubes (HNTs) were introduced together into the epoxy resin coating for the enhanced barrier protection of the metallic surface. The anticorrosion behaviors of different coatings were comparatively evaluated by the potentiodynamic polarization curves, electrochemical impedance spectroscopy (EIS), and neutral salt spray (NSS) tests. The potentiodynamic polarization curves showed that the coating containing 0.5 wt % HNTs and 0.8 wt % graphene (H05G08EP) together had the most positive corrosion potential and the minimum corrosion current density. The EIS results revealed that graphene endowed the composite coatings with excellent electrochemical performance for anticorrosive purposes. The NSS tests indicated that H05G08EP endured the longest NSS time. These results suggest that H05G08EP had the best corrosion resistance. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47562.  相似文献   

8.
马骏  孙冬  张明爽  张兰河  陈子成 《化工进展》2021,40(8):4456-4462
环氧树脂在溶剂蒸发过程中容易产生微孔,影响其防腐蚀性能。为了提高其对腐蚀介质的阻碍能力,本文采用密闭氧化法制备氧化石墨烯,再利用湿式转移法将氧化石墨烯水溶液分散在环氧树脂中,制备氧化石墨烯/环氧树脂防腐涂料。通过红外光谱(FTIR)、X射线衍射(XRD)和拉曼光谱(Raman)分析氧化石墨烯的结构变化,利用开路电位测试(OCP)、水接触角、腐蚀形貌和气体透过率分析氧化石墨烯/环氧树脂涂料的防腐性能。结果表明,氧化石墨烯/环氧树脂(GO/EP)涂料的开路电位和水接触角分别为0.181V和86.12°,与纯环氧树脂涂料相比,分别提高了0.066V和10.5°;当GO/EP浸泡在3.5%NaCl溶液中腐蚀20天后,表面仅产生了粗糙化,涂层稳定性好,屏障性能强;与EP涂层相比,GO/EP涂层的O2和H2O渗透率分别降低了51.2%和65.5%。  相似文献   

9.
研究了聚醚砜在环氧树脂及各类溶剂中的溶解性能;通过对涂层附着力、柔韧性的比较,研究了聚醚砜添加量对环氧树脂的增韧改性效果,比较了增韧改性环氧树脂涂层的抗空蚀性能。结果表明:聚醚砜在环氧树脂及强极性溶剂中具有较好的溶解性;聚醚砜能明显改善环氧树脂的柔韧性,且其加入量为20%~25%时增韧效果较好,此时增韧改性环氧涂层的抗空蚀性能相对较好。  相似文献   

10.
A thermoplastic modification method was studied for the purpose of improving the toughness and heat resistance and decreasing the curing temperature of the cured epoxy/4, 4′‐diaminodiphenyl sulfone resin system. A polyimide precursor‐polyamic acid (PAA) was used as the modifier which can react with epoxy. The effects of PAA on curing temperature, thermal stability and mechanical properties were investigated. The initial curing temperature (Ti) of the resin with 5 wt % PAA decreased about 50°C. The onset temperature of thermal decomposition and 10 wt %‐weight‐loss temperature for the resin system containing 2 wt % PAA increased about 60°C and 15°C respectively. Besides, the value of impact toughness and plain strain fracture toughness for the modified epoxy resin increased ~ 190% and 55%, respectively. Those changes were attributed to the outstanding thermal and mechanical properties of polyimide, and more importantly to formation of semi‐interpenetrating polymer networks composed by the epoxy network and linear PAA. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

11.
Cured epoxy resins have poor abrasion resistance, which shortens the service life of the material. This work aims to improve the tribological properties of epoxy resins by coupling self-lubrication and auto-healing. In this study, linseed oil microcapsules with an average particle size of 38.57 μm and good thermal stability were successfully prepared by in situ polymerization. The effects of microcapsule content on the tribological, mechanical, and self-healing properties of the composite coatings were studied. It was demonstrated that the composite coating has outstanding self-lubricating properties. The coefficient of friction reduced from 0.634 (pure epoxy resin) to 0.0459 (epoxy resin with 10 wt.% linseed oil microcapsules). Wear rate reduced from 7.16 × 10−4 mm3/(N m) to 1.74 × 10−5 mm3/(N m). The self-lubricating mechanism of the coating was investigated by SEM and EDS, which indicated that the formation of uniform and continuous lubricating film on the surface of the friction pairs was the key to improving the wear resistance of the material. In addition, the linseed oil released after the microcapsules rupture can repair the abrasion marks by reacting with oxygen during the friction process. The dual-functional effect of linseed oil microcapsules prolongs the life of epoxy resin coating and expands its application range.  相似文献   

12.
环氧改性水性聚氨酯涂料的合成与性能研究   总被引:34,自引:5,他引:34  
采用环氧树脂与聚醚、二羟甲基丙酸(DMPA)和甲苯二异氰酸酯(TDI)反应制备水性聚氨酯涂料。研究发现随着所用的环氧树脂的环氧值的降低,改性水性聚氨酯涂膜的硬度和拉伸强度逐渐提高,断裂伸长率则随着降低。选用环氧值为0.44的环氧树脂所合成的改性水性聚氨酯的涂膜硬度达到玻璃硬度0.70;随着环氧树脂添加量增大,涂膜机械性能增加。采用后添加环氧树脂的合成工艺,可制备贮存稳定的水性聚氨酯乳液;凝胶渗透色谱(GPC)分析表明环氧树脂改性水性聚氨酯提高了聚氨酯的分子量。性能测试表明环氧改性水性聚氨酯涂料具有涂膜硬度高、耐水性好和耐溶剂性好等优点。  相似文献   

13.
The effect of gamma irradiation and short glass fiber (SGF) on the thermal and morphological behavior of the recycled poly (ethylene terephthalate) (rPET) in the presence of reactive additive (epoxy resin, 2 wt %) has been investigated. Characterization of the resulted composites to evaluate the effect of incorporation the SGF and irradiation by means of differential scanning calorimetry, X‐ray diffraction, thermal gravimetric analysis, and scanning electron microscopy (SEM). The results show that the SGF and epoxy resin behave as nucleating agents for the crystallization of rPET. A noticeable increase in the rPET thermal stability in the presence of both SGF and epoxy resin has been observed. Furthermore, the rPET melting temperature (Tm) slightly decrease in the presence of the SGF and remains nearly constant with the incorporation of the epoxy resin. On the other hand, the rPET crystallinity percent (X%) decreases in the presence of SGF and gamma irradiation. The SEM showed that a layer of epoxy resin was coated onto the SGF in the rPET matrix. This coating layer raises the interfacial shear strength between the fiber and polymer matrix and also increases with gamma irradiation. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

14.
This study investigated different contents of an anhydride curing agent, an accelerant, and non‐ionic surfactants on the electrical resistivity of cured graphene/epoxy composites. The anhydride curing agent was hexahydrophthalic anhydride (HHPA), the accelerant was 2‐ethyl‐4‐methyl‐1H‐imidazole‐1‐propanenitrile (EMIP), and the non‐ionic surfactants were Triton X surfactants with different numbers of polyethylene oxide (PEO) groups (m) that influence the electrical resistivity of cured graphene/epoxy composites. During the curing process, differential scanning calorimetry (DSC) was used to determine the effects of the extent of the crosslinking for different contents of the curing agent and how different enthalpy (ΔH) on the electrical resistivity of the cured graphene/epoxy composites was then generated. The cured graphene/epoxy composite—which consisted of a 1 : 0.85 weight ratio of epoxy resin and anhydride, a 0.5 wt % accelerant, and a 13 wt % graphene powder—had a low electrical resistivity of 11.68 Ω·cm and a thermal conductivity of 1.7 W/m·K. In addition, the cured composites contained a 1.0 wt % polyethylene glycol p‐isooctylphenyl ether (X‐100) surfactant, which effectively decreased their electrical resistivity. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41975  相似文献   

15.
The development of a facile and efficient approach to prepare high-toughness epoxy resin is vital but has remained an enormous challenge. Herein, we have developed a high-performance environment-friendly solid epoxy resin modified with epoxidized hydroxyl-terminated polybutadiene (EHTPB) via one-step melt blending. The characterization, mechanical performance, curing behavior, and thermal properties of EHTPB-modified epoxy resin were investigated. EHTPB-modified epoxy resin exhibited excellent toughness with a 100% increase in elongation at break of tensile than that of neat epoxy resin. The transfer stress and dissipated energy in the rubber phase were predominant mechanisms of toughening. The toughening effect of EHTPB on solid epoxy resin was better than that of some of the previously reported liquid epoxy resins. Meanwhile, at 10 wt % of EHTPB loading, the EHTPB-modified epoxy resin displayed high strength and 22 and 101% improvement of flexural strength and impact strength, respectively. Moreover, at 10 wt % of EHTPB loading, the activation energy of EHTPB-modified epoxy resin for curing reaction decreased from 73.89 to 65.12 kJ·mol−1, which is beneficial for the curing reaction. Furthermore, EHTPB-modified epoxy resin had a good thermal stability and the initial degradation temperature increased from 249 to 313 °C at 10 wt % of EHTPB loading. This work provides a simple-preparation and highly efficient and large-scale approach for the production of high-toughness environment-friendly solid epoxy resins. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48596.  相似文献   

16.
The aim f this work is to study the effect of nanotubes on flammability properties of epoxy/glass composites. Multiwalled carbon nanotubes (MWNT) and its functionalized derivative (amino functionalized nanotubes) were incorporated into epoxy resin. To disperse MWNTs in the epoxy resin, different ways were employed. Microscopic observations showed that, the best dispersion state was gained by using ultrasonication method and high shear flow simultaneously. Thermal resistance of cured epoxy resins containing various amounts of nanotubes (0.25–0.7 wt %), was investigated by thermo gravimetric analysis (TGA). Introducing MWNTs and amino‐MWNTs to samples increased the initial thermal decomposition temperature for about 32 and 37°C, respectively. LOI measurements of composite samples showed an increase up to 32. Cone calorimetry test was carried out on epoxy/glass and epoxy/glass containing 0.5% MWNT. The results showed that, introducing 0.5% MWNTs decreases maximum average rate of heat emission for about 26%. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39849.  相似文献   

17.
The influence of polypropylene fibers on the thermal degradation of epoxy composites was investigated with thermogravimetric analysis. Three composites with 5, 10, or 15 wt % polypropylene fibers were prepared with epoxy as a matrix material. The polypropylene fibers, used as reinforcing materials, retarded the thermal decomposition, and increasing the weight percentage of the fiber material increased the thermal stability to a certain extent. Of the three composites, the 10 wt % polypropylene fiber/epoxy resin composite showed very good thermal stability, which was indicated by the increase in the resin decomposition temperature from 280°C for the 5 wt % polypropylene fiber/epoxy resin composite to 375°C for the 10 wt % polypropylene fiber/epoxy resin composite. The Horowitz–Metzger method was used to calculate the activation energies, and the results were tabulated. A morphological analysis was carried out with scanning electron microscopy to evaluate the dispersion of the fibers in the epoxy matrix. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 500–503, 2007  相似文献   

18.
The intercrosslinked networks of unsaturated polyester (UP) toughened epoxy–clay hybrid nanocomposites have been developed. Epoxy resin (DGEBA) was toughened with 5, 10 and 15% (by wt) of unsaturated polyester using benzoyl peroxide as radical initiator and 4,4′-diaminodiphenylmethane as a curing agent at appropriate conditions. The chemical reaction of unsaturated polyester with the epoxy resin was carried out thermally in presence of benzoyl peroxide-radical initiator and the resulting product was analyzed by FT-IR spectra. Epoxy and unsaturated polyester toughened epoxy systems were further modified with 1, 3 and 5% (by wt) of organophilic montmorillonite (MMT) clay. Clay filled hybrid UP-epoxy matrices, developed in the form of castings were characterized for their thermal and mechanical properties. Thermal behaviour of the matrices was characterized by differential scanning calorimetry (DSC), thermo gravimetric analysis (TGA) and dynamic mechanical analysis (DMA). Mechanical properties were studied as per ASTM standards. Data resulted from mechanical and thermal studies indicated that the introduction of unsaturated polyester into epoxy resin improved the thermal stability and impact strength to an appreciable extent. The impact strength of 3% clay filled epoxy system was increased by 19.2% compared to that of unmodified epoxy resin system. However, the introduction of both UP and organophilic MMT clay into epoxy resin enhanced the values of mechanical properties and thermal stability according to their percentage content. The impact strength of 3% clay filled 10% UP toughened epoxy system was increased by 26.3% compared to that of unmodified epoxy system. The intercalated nanocomposites exhibited higher dynamic modulus (from 3,072 to 3,820 MPa) than unmodified epoxy resin. From the X-ray diffraction (XRD) analysis, it was observed that the presence of d 001 reflections of the organophilic MMT clay in the cured product indicated the development of intercalated clay structure which in turn confirmed the formation of intercalated nanocomposites. The homogeneous morphologies of the UP toughened epoxy and UP toughened epoxy–clay hybrid systems were ascertained from scanning electron microscope (SEM).  相似文献   

19.
为了提升换热器表面耐腐蚀性且不影响换热器的换热效果,以石墨烯,石墨粉末,环氧树脂等为原料,制备应用于换热器表面的耐腐蚀高导热石墨烯复合涂层。经硫酸腐蚀实验、导热实验、结合强度实验的测试,结果表明:涂层的耐腐蚀性能随石墨烯含量的增加而提升,当石墨烯质量分数达到0.06%时,涂层的腐蚀速率达到最低值0.2338mg/(cm2·h),其耐腐蚀性能远强于304不锈钢的1.5 mg/(cm2·h);涂层的导热性能随石墨粉含量的增加而提升,且当石墨质量分数为8%时达到最大值35.848 W/(m·K);涂层的结合强度达到ASTM等级:5B。  相似文献   

20.
以苯基三乙氧基硅烷(PTES)和β-3,4-环氧环己基乙基三甲氧基硅烷(A186)为原料,甲醇、乙醇混合溶液为溶剂,酸性条件下水解制得含有Si—H键的环氧基低聚倍半硅氧烷(EP-POSS),通过傅里叶红外光谱(FT-IR)、核磁共振氢谱(1H NMR)、核磁共振硅谱(29Si NMR)等手段对其结构进行表征。用制备的EP-POSS对环氧树脂进行改性,分析了EP-POSS用量对树脂涂层附着力、耐冲击性、疏水性、耐热稳定性的影响。结果表明:当EP-POSS加入量为5%时,环氧树脂涂层附着力达到1级,耐冲击性达到50 cm,对水的接触角为90°,热稳定性大幅提升。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号