首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 0 毫秒
1.
Hybrid nanofluids are a new type of enhanced working fluids, engineered with enhanced thermo-physical properties. The hybrid nanofluids profit from the thermo-physical properties of more than one type of nanoparticles. The present study aims to address the free convective heat transfer of the Al2O3-Cu water hybrid nanofluid in a cavity filled with a porous medium. Two types of important porous media, glass ball and aluminum metal foam, are considered for the porous matrix. The experimental data show dramatic enhancement in the thermal conductivity and dynamic viscosity of the synthesized hybrid nanofluids, and hence, these thermophysical properties could not be modeled using available models of nanofluids. Thus, the actual available experimental data for the thermal conductivity and the dynamic viscosity of hybrid nanofluids are directly utilized in the present theoretical study. Various comparison with results published previously in the literature are performed and the results are found to be in excellent agreement. In most cases, the average Nusselt number Nul is decreasing function of the volume fraction of nanoparticles. The results show the reduction of heat transfer using nanoparticles in porous media. The observed reduction of the heat transfer rate is much higher for hybrid nanofluid compared to the single nanofluid.  相似文献   

2.
In the present study, the problem of conjugate natural and mixed convection of nanofluid in a square cavity containing several pairs of hot and cold cylinders is visualized using non-homogenous two-phase Buongiorno's model. Such configuration is considered as a model of heat exchangers in order to prevent the fluids contained in the pipelines from freezing or condensing. Water-based nanofluids with Cu, Al2O3, and TiO2 nanoparticles at different diameters (25nm?dp?145nm) are chosen for investigation. The governing equations together with the specified boundary conditions are solved numerically using the finite volume method based on the SIMPLE algorithm over a wide range of Rayleigh number (104?Ra?107), Richardson number (10-2?Ri?102) and nanoparticle volume fractions (0?φ?5%). Furthermore, the effects of three types of influential factors such as: orientation of conductive wall, thermal conductivity ratio (0.2?Kr?25) and conductive obstacles on the fluid flow and heat transfer rate are also investigated. It is found that the heat transfer rate is significantly enhanced by incrementing Rayleigh number and thermal conductivity ratio. It is also observed that at all Rayleigh numbers, the total Nusselt number rises and then reduces with increasing the nanoparticle volume fractions so that there is an optimal volume fraction of the nanoparticles where the heat transfer rate within the enclosure has a maximum value. Finally, the results reveal that by increasing the thermal conductivity of the nanoparticles and Rayleigh number, distribution of solid particles becomes uniform.  相似文献   

3.
《Advanced Powder Technology》2020,31(6):2480-2492
This paper is concerned with 3D-numerical studies on free convection flow of CuO–water nanofluid in a cubical cavity with porous fins embedded. The two-phase mixture model is employed and the numerical simulations are performed for natural flow of the nanofluid with volume concentrations from 0% to 3% at different Rayleigh (Ra) numbers inside the cavity equipped with 1, 2 and 3 porous fins. Increasing the nanoparticle fraction shows an improvement in heat transfer and Nusselt number. By increment of Ra and domination of convection, the nanofluid flow becomes truly irregular and consequently, the average Nusselt number enhances. For low Ra, isotherms are rather uniform due to weak buoyancy force. While, at higher Rayleigh numbers, augmentation of buoyancy force strongly reduces the isotherms uniformity. In the presence of porous fins, the flow velocity decreases with no significant change in the flow pattern. Also, at low Rayleigh numbers, embedding porous fins results in agitating parallel arrangement of isotherms. The influence of three mentioned variables (i.e., volume fraction, Rayleigh number and number of porous fins) on average Nusselt number is comparatively determined using Taguchi technique and signal to noise ratio according to which nanoparticle loading shows the most principal effect of all.  相似文献   

4.
In this paper the Lattice Boltzmann Method (LBM) is utilized to investigate the effects of uniform vertical magnetic field on the flow pattern and fluid–solid coupling heat transfer in a channel which is partially filled with porous medium. Al2O3–water nanofluid as a work fluid with temperature sensitive properties is forced to flow into the channel while the top and bottom walls of the channel is heated and kept at a constant temperature. In the present study, with respect to previous works and experimental data, a new correlation is presented for density of Al2O3–water nanofluid as a function of temperature. The result also shows that the step approximation which is used for the complex boundaries of porous medium is reliable. Finally, the effect of various volume fractions of nanoparticles (ϕ = 0%, 3%, 5% and 7%) and different magnitude of magnetic field (Ha = 0, 5, 10 and 15) on the rate of heat transfer are thoroughly explored. In accordance with the results, by raising the nanoparticle volume fraction, average temperature and velocity at the outlet of the channel increase and the average Nusselt number rises dramatically. In addition, the increase the Hartmann number leads to the slow growth in the average Nusselt number, although the outlet average temperature and velocity shows a little drop.  相似文献   

5.
The linear stability theory is used to investigate analytically the effects of gravity on centrifugally driven convection in a rotating porous layer offset from the axis of rotation. The stability of a basic solution is analysed with respect to the onset of stationary and oscillatory convection. It is also demonstrated that the stationary mode is the critical mode of convection thereby resulting in the convection rolls being aligned parallel to the axis of rotation. Besides providing a non-motionless basic solution and dictating the direction of the wave number, gravity plays a passive role and does not affect the stability results.  相似文献   

6.
The present work investigates the effect of four different thermal boundary conditions on natural convection in a fluid-saturated square porous cavity to make a judicious choice of optimal boundary condition on the basis of entropy generation, heat transfer and degree of temperature uniformity. Four different heating conditions- uniform, sinusoidal and two different linear temperature distributions are applied on the left vertical wall of the cavity respectively, while maintaining the right vertical wall uniformly cooled and the horizontal walls thermally insulated. The two-phase thermal lattice Boltzmann (TLBM) model for nanofluid is extended to simulate nanofluid flow through a porous medium by incorporating the Brinkman–Forchheimer-extended Darcy model. The close agreement between present LBM solutions with the existing published results lends validity to the present findings. The current results indicate that the uniform and bottom to top linear heating are found to be efficient heating strategies depending on Rayleigh number (103?≤?Ra?≤?105) and Darcy number (10?1?≤?Da?≤?10?6). It is observed that the nanofluid improves the energy efficiency by reducing the total entropy generation and enhancing the heat transfer rate although its augmentation depends on the optimal volume fraction of nanoparticles.  相似文献   

7.
By employing the finite element method, thermophoresis and Brownian diffusion are studied numerically relating to the natural convection in a wavy cavity that is filled with an Al2O3-water nanofluid possessing a central heat-conducting solid block that is influenced by the local heater located on the bottom wall. An isothermal condition is established in the two wavy vertical walls, while adiabatic condition is for the top horizontal wall. Partial heating is applied to the bottom of the horizontal wall, while the remaining part remains in the adiabatic condition. Empirical correlations are employed for the thermal conductivity and dynamic viscosity of the nanofluid. The number of oscillations (1?N4), Rayleigh number (103?Ra106), nanoparticles volume fraction (0??0.04) and dimensionless length of the bottom heater (0.2?H?0.8) govern the parameters in this study. The grid independency test, as well as experimental and numerical data from other published works, was employed to validate the developed computational code comprehensively. Based on the obtained results, it was found that the heat transfer inside the cavity is enhanced by introducing nanoparticles as well as a selection of optimal number of oscillations.  相似文献   

8.
A study has been carried out to obtain the solutions for heat and mass transfer from natural convection flow along a vertical surface with variable heat fluxes embedded in a porous medium due to thermal-diffusion (Soret) and diffusion-thermo (Dufour) effects. The buoyancy induced boundary layer adjacent to a vertical surface is analyzed using a non-Darcy flow model. The parameters for inertia, buoyancy ratio, exponent of heat flux, position and diffusion have been examined. The governing differential equations of continuity, momentum, energy and concentration are transformed into a set of coupled equations and solved using similarity analysis with numerical technique. Results show the velocity, temperature and concentration profiles related to local Nusselt and Sherwood numbers at different magnitude of Soret and Dufour numbers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号