首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Liquid-phase-pressureless-sintered SiC-AlN-Y2O3 composites were coated by means of modified pack cementation process (OXPAC, OXidation-assisted-PAck Cementation) using rare-earth oxides, RE2O3 (RE = Sc, Er, Sm, Lu, Ho), as reactive powders. The coatings, composed by the oxidation products of SiC, AlN and rare-earth silicates, were adherent to the substrate, without porosity and with a thickness of 10 μm. The oxidation resistance of the coated SiC-AlN-Y2O3 ceramics was also investigated at 1500 °C for a period of 200 h. The coated samples showed specific weight gain lower than the uncoated and pre-oxidised samples. Furthermore, the specific weight gain linearly increased with the rare-earth cationic radius.  相似文献   

2.
    
The potentials and limitations of a halide-activated pack cementation process on SiC/SiC Ceramic Matrix Composites for the development of bond coats as part of environmental barrier coating (EBCs) systems were investigated. Different pack compositions using chromium, aluminum and alloys of these elements were tested and the kinetics of coating formation were examined in addition to their microstructure. The results and their analogy to diffusion couples were discussed and it was shown that coating elements which form silicides and carbides are promising candidates for coatings deposited on SiC/SiC via pack cementation. Based on such considerations a two-step pack cementation was proposed, which used chromium, one of the suitable elements, in a first step, to finally achieve an alumina-forming coating. The oxidation resistance of the developed coating was tested via thermogravimetric analysis and compared to the uncoated material. The coating protected the fiber-matrix interface of the SiC/SiC Ceramic Matrix Composites from oxidation.  相似文献   

3.
    
《Ceramics International》2017,43(14):10848-10860
To investigate the effect of preparation methods on the La-Mo-Si (LMS) coatings, we developed a new LMS coating system using pack cementation (PC) and supersonic atmospheric plasma spraying (SAPS). Microstructure analysis showed that the SAPS-LMS coating possessed a higher porosity than that of the PC-LMS coating. Higher porosity can provide more channels to the oxidative and corrosive gasses to permeate the SAPS-LMS ceramic top-coat. After static oxidation for 150 h under 1773 K, the mass loss of SAPS-LMS coating (3.12 wt%) was much higher than that of the PC-LMS coating (0.05 wt%), and the parabolic rate constants presented faster oxidation kinetic in SAPS-LMS coating with respect to the PC-LMS coating. These results revealed that the protection effectiveness of SAPS-LMS coating was inferior to PC-LMS coating. Compared with SAPS-LMS coating, microscopic pores and cracks appeared in the PC-LMS coating with a thicker oxide film, which benefits from the formed La-Si-O-Al glass oxide with an excellent ability for crack healing. The reasons for poor antioxidant performance of SAPS-LMS coating are the higher volatility of La-Si-O glass containing Mo5Si3 and a weak interfacial interaction between coatings and substrate.  相似文献   

4.
Yttrium Oxide (Y2O3) deposited over High Density Graphite (HDG) by Atmospheric Plasma Spray (APS) process is highly desirable as a chemical barrier coating for reusable Uranium (U) melting crucibles in the pyrochemical reprocessing of spent metallic fuels. In the present study, an oxidation protective Silicon Carbide (SiC) interlayer coating over HDG has been achieved by pack cementation process. The high-temperature oxidation resistance and resistance to thermal fatigue failure of Y2O3 coating with and without SiC interlayer were evaluated by performing repeated thermal cycling studies at 1450, 1500 and 1550?°C. The durability performance of Y2O3 coating with SiC interlayer in the actual working environment was simulated by performing U melting studies using miniature size HDG coated crucibles. The microstructural, chemical and phase characterization of coatings prior and post thermal cycle failure were carried out by SEM/EDS and XRD techniques. It is observed that the SiC interlayer developed by novel pack cementation technique for the Y2O3 top coat extended the thermal cycling and life of the coating with U melting in inert argon gas environment significantly. The occurrence of micro-cracking over Y2O3 top coat with SiC interlayer perceived after 33, 30 and 25 thermal cycles at 1450, 1500 and 1550?°C, respectively.  相似文献   

5.
《Ceramics International》2022,48(4):5187-5196
To investigate the silicon/graphite ratio and temperature on preparation and properties of ZrB2–SiC coatings, ZrB2, silicon, and graphite powders were used as pack powders to prepare ZrB2–SiC coatings on SiC coated graphite samples at different temperatures by pack cementation method. The composition, microstructure, thermal shock, and oxidation resistance of these coatings were characterized and assessed. High silicon/graphite ratio (in this case, 2) did not guarantee higher coating density, instead could be harmful to coating formation and led to the lump of pack powders, especially at temperatures of 2100 and 2200 °C. But residual silicon in the coating is beneficial for high density and oxidation protection ability. The SiC/ZrB2–SiC (ZS50-2) coating prepared at 2000 °C showed excellent oxidation protective ability, owing to the residual silicon in the coating and dense coating structure. The weight loss of ZS50-2 after 15 thermal shocks between 1500 °C and room temperature, and oxidation for 19 h at 1500 °C are 6.5% and 2.9%, respectively.  相似文献   

6.
采用两步包埋法在Cf/SiC复合材料表面制备了Zr B_2-SiC/SiC超高温陶瓷涂层。借助SEM、XRD对涂层的微观结构及物相组成进行了分析研究,并进行了高温静态氧化和热震测试。研究表明,1500°C氧化5 h后,涂层表面覆盖有平整的玻璃相氧化层,氧化失重率为6.4%;热震测试10次后涂层的氧化失重率为14%。Zr B_2-SiC/SiC涂层能有效提高Cf/SiC复合材料的高温抗氧化性能。  相似文献   

7.
Al2O3-modified SiC (AOSC) and Al-modified SiC (ASC) coatings were prepared on carbon/carbon (C/C) composites by one-time pack cementation (PC). Their microstructures and anti-oxidation performances were studied. Compared with ASC coating, AOSC coating shows more conspicuous defects (micro-cracks and holes) and lower densification. ASC coating can offer better oxidation resistance and thermal shock resistance to C/C composites than AOSC coating. Al additive can more efficiently improve the sinterability of SiC, which causes the above results. Besides, Al2O3 oxidation product is more stable than SiO2 (l) of oxidized SiC at 1500 °C based on the thermodynamic analysis.  相似文献   

8.
    
《Ceramics International》2020,46(5):5993-5997
Two different structures of MoSi2 coatings were prepared on Niobium based alloys by using a two step process. The as-deposited type(a) MoSi2 coating structure consists of a MoSi2 layer on the surface and a NbSi2 layer underneath, while the type(b) MoSi2 coating consists of an outer MoSi2 layer and an inner unsiliconized Mo layer. The oxidation behaviors of the two different types MoSi2 coatings were examined at 1200 °C for 100 h in air, and the mass gains of type(a) and type(b) MoSi2 coated specimens were 0.64 mg/cm2 and 0.59 mg/cm2 respectively. The excellent oxidation resistance of both type(a) and type(b) MoSi2 coated samples at 1200 °C was due to the formation of a dense and continuous SiO2 scale during oxidation. As the CTE mismatch between the outer MoSi2 coating and the inner layer, cracks distributed within both type(a) and type(b) MoSi2 coating structures.  相似文献   

9.
    
Tantalum (Ta) alloys are important ultra-high-temperature structural materials owing to their excellent high-temperature mechanical properties and processability. However, they exhibit poor high-temperature oxidation resistance. In this study, a dense MoSi2 ceramic coating was prepared on a Ta substrate using an innovative multi-arc ion plating process and halide activated pack cementation in order to improve its ultra-high-temperature oxidation resistance. This ceramic coating exhibited a low roughness space arithmetic (287.1 ± 26.3 nm) and a dense structure. The relationship between the thickness of the coating and the duration of pack-cementation at 1250 ℃ was parabolic. The coating had a service life of more than 12 h at 1750 ℃, and showed excellent high-temperature oxidation resistance because of the uniform and dense structure of the coating and the rapid formation of a dense SiO2 layer with low O2 permeability during high-temperature oxidation.  相似文献   

10.
    
《Ceramics International》2017,43(2):1722-1730
To protect carbon/carbon composites (C/Cs) against oxidation, SiC coating toughened by SiC nanowires (SiCNWs) and carbon nanotubes (CNTs) hybrid nano-reinforcements was prepared on C/Cs by a two-step technique involving electrophoretic co-deposition and reactive melt infiltration. Co-deposited SiCNWs and CNTs with different shapes including straight-line, fusiform, curved and bamboo dispersed uniformly on the surface of C/Cs forming three-dimensional networks, which efficiently refined the SiC grains and meanwhile suppressed the cracking deflection of the coating during the fabrication process. The presence of SiCNWs and CNTs contributed to the formation of continuous glass layer during oxidation, while toughed the coating by introducing toughing methods such as bridging effect, crack deflection and nanowire pull out. Results showed that after oxidation for 45 h at 1773 K, the weight loss percentage of SiC coated specimen was 1.35%, while the weight gain percentage of the SiCNWs/CNTs reinforced SiC coating was 0.03052% due to the formation of continuous glass layer. After being exposed for 100 h, the weight loss percentage of the SiCNWs/CNTs reinforced SiC coating was 1.08%, which is relatively low.  相似文献   

11.
Three-dimensional carbon fiber reinforced silicon carbide (C/SiC) composites were fabricated by precursor infiltration and pyrolysis (PIP) with polycarbosilane as the matrix precursor, SiC coating prepared by chemical vapor deposition (CVD) and ZrB2-SiC/SiC coating prepared by CVD with slurry painting were applied on C/SiC composites, respectively. The oxidation of three samples at 1500 °C was compared and their microstructures and mechanical properties were investigated. The results show that the C/SiC without coating is distorted quickly. The mass loss of SiC coating coated sample is 4.6% after 2 h oxidation and the sample with ZrB2-SiC/SiC multilayer coating only has 0.4% mass loss even after oxidation. ZrB2-SiC/SiC multilayer coating can provide longtime protection for C/SiC composites. The mode of the fracture behavior of C/SiC composites was also changed. When with coating, the fracture mode of C/SiC composites became brittle. When after oxidation, the fracture mode of C/SiC composites without and with coating also became brittle.  相似文献   

12.
    
《Ceramics International》2021,47(23):32505-32513
A ZrC–SiC/TiC–SiC/SiC sandwich-structured coating is prepared on a C/C composite by pack cementation methods. The microstructures of this coating are characterized by using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM), and the oxidation resistance is investigated by performing an oxidation test at 1773 K and a cyclic oxidation test. The results show that the mass losses are 7.4% and 3.8% after oxidation for 144 h and 40 cycles, respectively. The sandwich structure relaxes, releases the thermal stress caused by the mismatch in the coefficients of thermal expansion, and absorbs energy to prevent the initiation and propagation of cracks. The ZrC–SiC/TiC–SiC/SiC coating exhibits good isothermal oxidation resistance and excellent cyclic oxidation protection properties.  相似文献   

13.
    
To maintain the thermal stability of SiC nanowires during SiC coating fabrication process, carbon and SiC double protective layers were covered on the surface of nanowires. And SiC nanowires with double protective layers toughened SiC coating were prepared by pack cementation. The results showed that after introducing the SiC nanowires with double protective layers, the fracture toughness of the SiC coating was increased by 88.4 %. The coating protected C/C for 175 h with a mass loss of 3.67 %, and after 51 thermal shock cycles, the mass losses of the oxidized coating were 3.96 %. The double protective layers are beneficial to improve the thermal stability of nanowires, leading to good fracture toughness and thermal shock resistance of SiC coating. SiC nanowires consume the energy of crack propagation by fracture, pullout and bridging, leading to an increase in fracture toughness.  相似文献   

14.
    
New method to prepare Si-SiC coating on C/C composites by laser cladding (LC-Si-SiC) was established to improve the laser ablation resistance of the coating. Results showed that the LC-Si-SiC coating had lower roughness, better mechanical properties and superior laser-ablation resistance compared with the Si-SiC coating fabricated by the traditional coating preparation process: pack cementation (PC-Si-SiC). Due to the shorter heat treatment and less Si infiltration, the flexural strength of the LC-Si-SiC coated sample was 111.32 MPa, which was 144% higher than that of the PC-Si-SiC coated sample. Confirmed by finite element simulation, the LC-Si-SiC coating exhibited better laser-ablation resistance because of the “sweating cooling” mechanism. Under 23.89 MW?m?2 ablation for 7 s, the surface temperature of the LC-Si-SiC coated sample was 3046 K, which was 157 K lower than that of the PC-Si-SiC, causing the mass loss rate of the LC-Si-SiC coating (0.10%) was only 45.45% of the PC-Si-SiC coating.  相似文献   

15.
《Ceramics International》2016,42(11):12573-12580
To improve the oxidation resistance of carbon/carbon (C/C) composites at high temperature, a SiC nanowire-toughened MoSi2-WSi2-SiC-Si multiphase coating was prepared by chemical vapor deposition (CVD) and pack cementation. The microstructure, mechanical properties and oxidation resistance of the coating were investigated. After the introduction of SiC nanowires, the elastic modulus, hardness, and fracture toughness of the MoSi2-WSi2-SiC-Si coating were increased by 25.48%, 4.09% and 45.03%, respectively. The weight loss of the coated sample with SiC nanowires was deceased from 4.83–2.08% after thermal shock between 1773 K and room temperature for 30 cycles and the weight loss is only 3.24% after isothermal oxidation at 1773 K in air for 82 h. The good oxidation resistance of the coating is mainly attributed to that SiC nanowires can effectively inhibit the propagation of cracks in the coating by the toughening mechanisms including bridging and pull-out.  相似文献   

16.
A multi-layer SiC nanowires reinforced SiC (SiCnws-SiC) coating was prepared in-situ on carbon/carbon (C/C) composites by three chemical vapor deposition (CVD) processes. The microstructure and phase composition of the nanowires fabricated on the first-layer SiCnws-SiC coating and the coatings were examined by SEM, TEM, and XRD. The bamboo-like SiC nanowires with a 50?nm diameter and a length of several tens of micrometers are straight, randomly orientated and distributed like a net on the first-layer SiCnws-SiC coating. The growth direction is [111], and the growth mechanism is VS. The multi-layer SiCnws-SiC coating has three layers: the thickness of the first-layer is roughly 400?µm, and the outer two layers are about 200?µm. Each layer has a sandwich structure. The isothermal oxidation and erosion resistance of the multi-layer SiCnws-SiC coating were investigated in an electrical furnace and a high temperature wind tunnel. The results indicated that the weight loss of the multi-layer SiCnws-SiC coated C/C composites was only 1.8% after oxidation in static air at 1773?K for 361?h. Further, the coated sample failed due to fracture of the coating at the clamping position (i.e. 80?mm) after erosion at 1873?K for 130?h in the wind tunnel. The weight loss of the coated C/C composites occurred due to the formation of penetrating cracks in the coating during the oxidation thermal shock. The maximum bending moment and the larger clamping force caused the coating fracture and resulted in intense oxidation of the substrate and the failure of the specimen.  相似文献   

17.
SiC/SiC复合材料及其应用   总被引:1,自引:0,他引:1  
日本开发的Nicalon和Tyranno两种品牌的SiC纤维占有世界上绝对性的市场份额。SiC/SiC复合材料典型的界面层是500 nm厚的单层热解碳(PyC)涂层或多层(PyC-SiC)n涂层,在湿度燃烧环境及中高温条件下界面层的稳定性是应用研究的重点。SiC/SiC复合材料,包括CVI-SiC基体和日本开发的Tyranno hex和NITE-SiC基体等,具有耐高温、耐氧化性和耐辐射性的特点,在航空涡轮发动机部件、航天热结构部件及核聚变反应堆炉第一壁材料等方面正开展工程研制应用。  相似文献   

18.
To improve the wear resistance of SiC coating on carbon/carbon (C/C) composites, SiC nanowires (SiCNWs) were introduced into the SiC wear resistant coating. The dense SiC nanowire-reinforced SiC coating (SiCNW-SiC coating) was prepared on C/C composites using a two-step method consisting of chemical vapor deposition and pack cementation. The incorporation of SiCNWs improved the fracture toughness of SiC coating, which is an advantage in wear resistance. Wear behavior of the as-prepared coatings was investigated at elevated temperatures. The results show that the wear resistance of SiCNW-SiC coating was improved significantly by introducing SiC nanowires. It is worth noting that the wear rate of SiCNW-SiC coating was an order of magnitude lower than that of the SiC coating without SiCNWs at 800 °C. The wear mechanisms of SiCNW-SiC coating at 800 °C were abrasive wear and delamination. Pullout and breakage of SiC grains resulted in failure of SiC coating without SiCNWs at 800 °C.  相似文献   

19.
SiC ceramic coating, for prevention of C/C composites against oxidation, was prepared by pressure-less reactive sintering to investigate the oxidation behaviour in an oxidising environment containing water vapour at 1773 K. The experimental results demonstrated that the oxidation behaviour of porous SiC ceramics could be divided into two stages, following the parabolic model, which was attributed to the variation in the contact area involved in the oxidation reactions. During the entire oxidation process, water vapour could accelerate the oxidation of the SiC ceramics, according to the weight change. By first-principle calculations, the accelerated oxidation rate of the SiC ceramics was attributed to weakened Si–O and Al–O bonds in the formed glassy scale, which were caused by hydroxide radicals from the water. Atomic thermal motions at high temperature could lead to the breakage of the network structure, promoting the diffusion and solution of oxidising gases. When the as-prepared SiC ceramics were applied as anti-oxidative coatings for the C/C composites, the SiC ceramic coating and C/C matrix could be sealed and protected faster per unit time, because water vapour was beneficial to the formation of a glassy layer. The weight loss of the C/C matrix could be attributed to unsealed microcracks inside the SiC coating in the initial stage.  相似文献   

20.
    
《Ceramics International》2017,43(11):8208-8213
In order to improve the oxidation behavior of carbon/carbon composites in a wide range of temperature, a new SiC/glaze-precursor coating was developed.The SiC layer was produced by slurry and sintering, while the glaze precursor layer was prepared by slurry and drying. The microstructures and phase compositions of the coating were analyzed by SEM and XRD, respectively. The oxidation resistance of the coated composites was investigated using both isothermal and temperature-programmed thermogravimetric analysis in the temperature range from room temperature to 1600 °C. The results showed that the oxidation behavior of the coating was mainly controlled by the diffusion of oxygen during the test.The coating showed excellent oxidation resistance and self-healing ability in a wide range of temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号