首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 81 毫秒
1.
p53 immunohistochemistry is considered an accurate surrogate marker reflecting the underlying TP53 mutation status and has utility in tumor diagnostics. In the present study, 269 primary CRCs were immunohistochemically evaluated for p53 expression to assess its utility in diagnostic pathology and prognostication. p53 expression was wild-type in 59 cases (23%), overexpressed in 143 cases (55%), completely lost in 50 cases (19%), and cytoplasmic in 10 cases (4%). p53 immunoreactivity was associated with tumor size (p = 0.0056), mucus production (p = 0.0015), and mismatch repair (MMR) system status (p < 0.0001). Furthermore, among CRCs with wild-type p53 expression, a significantly higher number of cases had decreased CDX2 than those with p53 overexpression (p = 0.012) or complete p53 loss (p = 0.043). In contrast, among CRCs with p53 overexpression, there were significantly fewer ALCAM-positive cases than p53 wild-type cases (p = 0.0045). However, no significant association was detected between p53 immunoreactivity and the “stem-like” immunophenotype defined by CDX2 downregulation and ALCAM-positivity. Multivariate Cox hazards regression analysis identified tubular-forming histology (hazard ratio [HR] = 0.17, p < 0.0001), younger age (HR = 0.52, p = 0.021), and female sex (HR = 0.55, p = 0.046) as potential favorable factors. The analysis also revealed complete p53 loss (HR = 2.16, p = 0.0087), incomplete resection (HR = 2.65, p = 0.0068), and peritoneal metastasis (HR = 5.32, p < 0.0001) as potential independent risk factors for patients with CRC. The sub-cohort survival analyses classified according to chemotherapy after surgery revealed that CRC patients with wild-type p53 expression tended to have better survival than those with overexpression or complete loss after chemotherapy. Thus, immunohistochemistry for p53 could be used for the prognostication and chemotherapy target selection of patients with CRC.  相似文献   

2.
Colorectal cancer cell (CRC) is the fourth most common cancer in the world. There are several chemotherapy drugs available for its treatment, though they have side effects. Cycloastragenol (CY) is a compound from Astragalus membranaceus (Fisch.) Bge known to be effective in aging, anti-inflammatory, anticancer, and anti-heart failure treatments. Although many studies have demonstrated the functions of CY in cancer cells, no studies have shown the effects of p53 in colon cancer cells. In this study, we found that CY reduces the viability of colon cancer cells in p53 wild-type cells compared to p53 null cells and HT29. Furthermore, CY induces apoptosis by p53 activation in a dose- and time-dependent manner. And it was confirmed that it affects the L5 gene related to p53. Additionally, CY enhanced p53 expression compared to when either doxorubicin or 5-FU was used alone. Altogether, our findings suggest that CY induces apoptosis via p53 activation and inhibits the proliferation of colon cancer cells. In addition, apoptosis occurs in colon cancer cells due to other factors. Moreover, CY is expected to have a combined effect when used together with existing treatments for colon cancer in the future.  相似文献   

3.
Plant-derived natural polyphenols exhibit anticancer activity without showing any noticeable toxicities to normal cells. The aim of this study was to investigate the role of p53 on the anticancer effect of polyphenols isolated from Korean Artemisia annua L. (pKAL) in HCT116 human colorectal cancer cells. We confirmed that pKAL induced reactive oxygen species (ROS) production, propidium iodide (PI) uptake, nuclear structure change, and acidic vesicles in a p53-independent manner in p53-null HCT116 cells through fluorescence microscopy analysis of DCF/PI-, DAPI-, and AO-stained cells. The pKAL-induced anticancer effects were found to be significantly higher in p53-wild HCT116 cells than in p53-null by hematoxylin staining, CCK-8 assay, Western blot, and flow cytometric analysis of annexin V/PI-stained cells. In addition, expression of ectopic p53 in p53-null cells was upregulated by pKAL in both the nucleus and cytoplasm, increasing pKAL-induced cell death. Moreover, Western bot analysis revealed that pKAL-induced cell death was associated with upregulation of p53-dependent targets such as p21, Bax and DR5 and cleavage of PARP1 and lamin A/C in p53-wild HCT116 cells, but not in p53-null. Taken together, these results indicate that p53 plays an important role in enhancing the anticancer effects of pKAL by upregulating p53 downstream targets and inducing intracellular cell death processes.  相似文献   

4.
Apoptosis is a major cause of reduced podocyte numbers, which leads to proteinuria and/or glomerulosclerosis. Emerging evidence has indicated that deSUMOylation, a dynamic post-translational modification that reverses SUMOylation, is involved in the apoptosis of Burkitt’s lymphoma cells and cardiomyocytes; however, the impact of deSUMOylation on podocyte apoptosis remains unexplored. The p53 protein plays a major role in the pathogenesis of podocyte apoptosis, and p53 can be SUMOylated. Therefore, in the present study, we evaluated the effect of p53 deSUMOylation, which is regulated by sentrin/SUMO-specific protease 1 (SENP1), on podocyte apoptosis. Our results showed that SENP1 deficiency significantly increases puromycin aminonucleoside (PAN)-induced podocyte apoptosis. Moreover, SENP1 knockdown results in the accumulation of SUMOylated p53 protein and the increased expression of the p53 target pro-apoptotic genes, BAX, Noxa and PUMA, in podocytes during PAN stimulation. Thus, SENP1 may be essential for preventing podocyte apoptosis, at least partly through regulating the functions of p53 protein via deSUMOylation. The regulation of deSUMOylation may provide a novel strategy for the treatment of glomerular disorders that involve podocyte apoptosis.  相似文献   

5.
6.
7.
Hormone-specific anticancer drugs for breast cancer treatment can cause serious side effects. Thus, treatment with natural compounds has been considered a better approach as this minimizes side effects and has multiple targets. 6-Gingerol is an active polyphenol in ginger with various modalities, including anticancer activity, although its mechanism of action remains unknown. Increases in the level of reactive oxygen species (ROS) can lead to DNA damage and the induction of DNA damage response (DDR) mechanism, leading to cell cycle arrest apoptosis and tumorsphere suppression. Epidermal growth factor receptor (EGFR) promotes tumor growth by stimulating signaling of downstream targets that in turn activates tumor protein 53 (p53) to promote apoptosis. Here we assessed the effect of 6-gingerol treatment on MDA-MB-231 and MCF-7 breast cancer cell lines. 6-Gingerol induced cellular and mitochondrial ROS that elevated DDR through ataxia-telangiectasia mutated and p53 activation. 6-Gingerol also induced G0/G1 cell cycle arrest and mitochondrial apoptosis by mediating the BAX/BCL-2 ratio and release of cytochrome c. It also exhibited a suppression ability of tumorsphere formation in breast cancer cells. EGFR/Src/STAT3 signaling was also determined to be responsible for p53 activation and that 6-gingerol induced p53-dependent intrinsic apoptosis in breast cancer cells. Therefore, 6-gingerol may be used as a candidate drug against hormone-dependent breast cancer cells.  相似文献   

8.
Recent pharmacological research on milk whey, a byproduct of the dairy industry, has identified several therapeutic properties that could be exploited in modern medicine. In the present study, we investigated the anticancer effects of whey from Mediterranean buffalo (Bubalus bubalis) milk. The antitumour effect of delactosed milk whey (DMW) was evaluated using the HCT116 xenograft mouse model of colorectal cancer (CRC). There were no discernible differences in tumour growth between treated and untreated groups. Nevertheless, haematoxylin and eosin staining of the xenograft tissues showed clearer signs of different cell death in DMW-treated mice compared to vehicle-treated mice. Detailed biochemical and molecular biological analyses revealed that DMW was able to downregulate the protein expression levels of c-myc, phospho-Histone H3 (ser 10) and p-ERK. Moreover, DMW also activated RIPK1, RIPK3, and MLKL axis in tumour tissues from xenograft mice, thus, suggesting a necroptotic effect. The necroptotic pathway was accompanied by activation of the apoptotic pathway as revealed by increased expression of both cleaved caspase-3 and PARP-1. At the molecular level, DMW-induced cell death was also associated with (i) upregulation of SIRT3, SIRT6, and PPAR-γ and (ii) downregulation of LDHA and PPAR-α. Overall, our results unveil the potential of whey as a source of biomolecules of food origin in the clinical setting of novel strategies for the treatment of CRC.  相似文献   

9.
Mushroom galectins are promising anticancer agents for their low IC50 values against cancer cells in vitro. In this study, two Coprinopsis cinerea galectins, CGL1 and CGL2, were heterologously expressed, and their biochemistry properties and anticancer effects were evaluated. The purified galectins were thermostable at neutral pH conditions. They both existed as tetramers and shared a high affinity towards lactose. CGL1 and CGL2 strongly inhibited the cell viability of many cancer cell lines, including three colorectal cancer cells, in a dose-dependent manner by inducing mitochondria-mediated caspase-dependent apoptosis. Furthermore, CGL1 exhibited higher apoptosis-inducing ability and cytotoxicity than CGL2. In vivo cell viability experiments based on two xenograft mouse models showed that CGL1 had a more substantial inhibitory effect than CGL2 on HCT116 tumor growth (p < 0.0001), whereas only CGL1 inhibited DLD1 tumor growth (p < 0.01). This is the first study to evaluate the anti-colorectal cancer effect of mushroom lectins in vivo, and our results showed that CGL1 is a potent agent for colorectal cancer treatment.  相似文献   

10.
Dysregulation of mitochondrial quality control has been reported to be associated with cancer and degenerative diseases. SPATA18 (spermatogenesis-associated 18, also known as Mieap) encodes a p53-inducible protein that can induce lysosome-like organelles within mitochondria that eliminate oxidized mitochondrial proteins and has tumor suppressor functions in mitochondrial quality control. In the present study, 268 primary colorectal cancers (CRCs) were evaluated immunohistochemically for SPATA18 expression to assess its predictive utility and its association with cellular proliferation activity. Furthermore, the association with p53 immunoreactivity, a surrogate marker for TP53 mutation, was analyzed. Non-neoplastic colonic mucosa showed cytoplasmic SPATA18 expression. Seventy-two percent of the lesions (193/268) displayed high SPATA18 expression in the cytoplasm of CRC cells. Univariate analyses revealed significant associations between SPATA18 expression and tumor size (p < 0.0001), histological differentiation (p = 0.0017), and lymph node metastasis (p = 0.00039). The log-rank test revealed that patients with SPATA18-high CRCs had significantly better survival than SPATA18-low patients (p < 0.0001). Multivariate Cox hazards regression analysis identified tubular-forming histology (hazard ratio [HR] = 0.25), age < 70 years (HR = 0.50), and SPATA18-high (HR = 0.55) as potential favorable factors. Lymph node metastasis (HR = 1.98) and peritoneal metastasis (HR = 5.45) were cited as potential independent risk factors. Cellular proliferation activity was significantly higher in SPATA18-high tumors. However, no significant correlation was detected between SPATA18 expression and p53 immunoreactivity or KRAS/BRAF mutation status. On the basis of our observations, SPATA18 immunohistochemistry can be used in the prognostication of CRC patients.  相似文献   

11.
Curcumol, isolated from the traditional medical plant Rhizoma Curcumae, is the bioactive component of Zedoary oil, whose potential anti-tumor effect has attracted considerable attention in recent years. Though many researchers have reported curcumol and its bioactivity, the potential molecular mechanism for its anti-cancer effect in colorectal cancer LoVo cells still remains unclear. In the present study, we found that curcumol showed growth inhibition and induced apoptosis of LoVo cells in a dose- and time-dependent manner. The occurrence of its proliferation inhibition and apoptosis came with suppression of IGF-1R expression, and then increased the phosphorylation of p38 mitogen activated protein kinase (MAPK), which might result in a cascade response by inhibiting the CREB survival pathway and finally triggered Bax/Bcl-2 and poly(ADP-ribose) polymerase 1 (PARP-1) apoptosis signals. Moreover, curcumol inhibited colorectal cancer in xenograft models of nude mice. Immunohistochemical and Western blot analysis revealed that curcumol could decrease the expression of ki-67, Bcl-2 as well as CREB1, and increase the expression of Bax and the phosphorylation of p38, which were consistent with our in vitro study. Overall, our in vitro and in vivo data confirmed the anti-cancer activity of curcumol, which was related to a significant inhibition of IGF-1R and activation of p38 MAPKs, indicating that curcumol may be a potential anti-tumor agent for colorectal carcinoma therapy.  相似文献   

12.
To search for novel p53 activators, four series of novel (S)- and (R)-tryptophanol-derived oxazoloisoindolinones were synthesized in a straightforward manner and their antiproliferative activity was evaluated in the human colorectal cancer HCT116 cell line. Structural optimization of the hit compound SLMP53-1 led to the identification of a (R)-tryptophanol-derived isoindolinone that was found to be six-fold more active, with increased selectivity for HCT116 cells with p53 and with low toxicity in normal cells. Binding studies with MDM2 showed that the antiproliferative activity of tryptophanol-derived isoindolinones does not involve inhibition of the main negative regulator of the p53 protein. Molecular docking simulations showed that although these molecules establish hydrophobic interactions with MDM2, they do not possess the required features to bind MDM2.  相似文献   

13.
14.
Mutations in the p53 tumor suppressor are found in over 50% of cancers. p53 function is controlled through posttranslational modifications and cofactor interactions. In this study, we investigated the posttranslationally modified p53, including p53 acetylated at lysine 382 (K382), p53 phosphorylated at serine 46 (S46), and the p53 cofactor TTC5/STRAP (Tetratricopeptide repeat domain 5/ Stress-responsive activator of p300-TTC5) proteins in lung cancer. Immunohistochemical (IHC) analysis of lung cancer tissues from 250 patients was carried out and the results were correlated with clinicopathological features. Significant associations between total or modified p53 with a higher grade of the tumour and shorter overall survival (OS) probability were detected, suggesting that mutant and/or modified p53 acts as an oncoprotein in these patients. Acetylated at K382 p53 was predominantly nuclear in some samples and cytoplasmic in others. The localization of the K382 acetylated p53 was significantly associated with the gender and grade of the disease. The TTC5 protein levels were significantly associated with the grade, tumor size, and node involvement in a complex manner. SIRT1 expression was evaluated in 50 lung cancer patients and significant positive correlation was found with p53 S46 intensity, whereas negative TTC5 staining was associated with SIRT1 expression. Furthermore, p53 protein levels showed positive association with poor OS, whereas TTC5 protein levels showed positive association with better OS outcome. Overall, our results indicate that an analysis of p53 modified versions together with TTC5 expression, upon testing on a larger sample size of patients, could serve as useful prognostic factors or drug targets for lung cancer treatment.  相似文献   

15.
16.
目的 探讨外源性p53基因转染对人卵巢癌细胞系的化疗、放疗敏感性的影响。方法 用分子克隆技术构建人野生型 p53基因与真核细胞表达载体 pcDNA3的重组体(pcDNA-p53),并用脂质体介导的转染技术,将其导入不表达p53的卵巢癌SKOV-3细胞中,经 G418筛选,Northern blot及Western blot鉴定后,观察p53基因转染对顺铂或X线放射作用的SKOV-3细胞的集落形成的影响。结果 成功地构建了人野生型p53基因与真核细胞表达载体的重组体。外源性 p53基因在转染细胞中有效表达,增强了顺铂或X线放射对 SKOV-3细胞集落形成的抑制作用。结论 外源性p53基因能增强卵巢癌细胞对顺铂或放射的敏感性,p53基因治疗与化疗或放疗联合作用能更大程度地杀灭肿瘤细胞。  相似文献   

17.
Oxidative damages induced by a redox imbalance cause age-related changes in cells and tissues. Superoxide dismutase (SOD) enzymes play a major role in the antioxidant system and they also catalyze superoxide radicals (O2•−). Since the loss of cytoplasmic SOD (SOD1) resulted in aging-like phenotypes in several types of mouse tissue, SOD1 is essential for the maintenance of tissue homeostasis. To clarify the cellular function of SOD1, we investigated the cellular phenotypes of Sod1-deficient fibroblasts. We demonstrated that Sod1 deficiency impaired proliferation and induced apoptosis associated with O2•− accumulation in the cytoplasm and mitochondria in fibroblasts. Sod1 loss also decreased the mitochondrial membrane potential and led to DNA damage-mediated p53 activation. Antioxidant treatments effectively improved the cellular phenotypes through suppression of both intracellular O2•− accumulation and p53 activation in Sod1-deficient fibroblasts. In vivo experiments revealed that transdermal treatment with a vitamin C derivative significantly reversed the skin thinning commonly associated with the upregulated p53 action in the skin. Our findings revealed that intrinsic O2•− accumulation promoted p53-mediated growth arrest and apoptosis as well as mitochondrial disfunction in the fibroblasts.  相似文献   

18.
Purpose: In order to study novel therapeutic approaches taking advantage of natural compounds showing anticancer and anti-proliferative effects, we focused our interest on S-adenosyl-l-methionine, a naturally occurring sulfur-containing nucleoside synthesized from adenosine triphosphate and methionine by methionine adenosyltransferase, and its potential in overcoming drug resistance in colon cancer cells devoid of p53. Results: In the present study, we demonstrated that S-adenosyl-l-methionine overcomes uL3-mediated drug resistance in p53 deleted colon cancer cells. In particular, we demonstrated that S-adenosyl-l-methionine causes cell cycle arrest at the S phase; inhibits autophagy; augments reactive oxygen species; and induces apoptosis in these cancer cells. Conclusions: Results reported in this paper led us to propose S-adenosyl-l-methionine as a potential promising agent for cancer therapy by examining p53 and uL3 profiles in tumors to yield a better clinical outcomes.  相似文献   

19.
The metabolism and apoptosis of tumor cells are important factors that increase their sensitivity to chemotherapeutic drugs. p53 and cisplatin not only induce tumor cell apoptosis, but also regulate the tumor cell metabolism. The TP53-induced glycolysis and apoptosis regulator (TIGAR) can inhibit glycolysis and promote more glucose metabolism in the pentose phosphate pathway. We speculate that the regulation of the TIGAR by the combination therapy of p53 and cisplatin plays an important role in increasing the sensitivity of tumor cells to cisplatin. In this study, we found that the combined treatment of p53 and cisplatin was able to inhibit the mitochondrial function, promote mitochondrial pathway-induced apoptosis, and increase the sensitivity. Furthermore, the expression of the TIGAR was inhibited after a combined p53 and cisplatin treatment, the features of the TIGAR that regulate the pentose phosphate pathway were inhibited, the glucose flux shifted towards glycolysis, and the localization of the complex of the TIGAR and Hexokinase 2 (HK2) on the mitochondria was also reduced. Therefore, the combined treatment of p53 and cisplatin may modulate a glycolytic flux through the TIGAR, altering the cellular metabolic patterns while increasing apoptosis. Taken together, our findings reveal that the TIGAR may serve as a potential therapeutic target to increase the sensitivity of lung cancer A549 cells to cisplatin.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号