首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new grain refiner, LaB6, was identified for ferritic steels based on the crystallographic calculation using the edge-to-edge matching model. Addition of 0.5 wt pct LaB6 led to a reduction of the average grain size from 765 to 92 μm and the proportion of the columnar structure from 35 to 8 pct in an as-cast Fe-4Si ferritic alloy. Although LaB6 was supposed to act as an active inoculant for δ-ferrite, thermodynamic calculation indicated that LaB6 is not thermodynamically stable in the melt of the Fe-4Si alloy. It was subject to decompose into La and B solutes. Consequently, both La and B reacted with Fe, O and S, forming different compounds. Microstructural examination at room temperature observed La2SO2 and La2O3 particles within the ferrite grains and Fe2B along the grain boundaries in the samples. Through EBSD analysis, a reproducible orientation relationship between ferrite and La2SO2 was identified. In addition, the edge-to-edge matching calculation also predicted the high potency for La2SO2 to be an effective nucleant for δ-ferrite. It was considered that the grain refinement of LaB6 was attributed to the enhanced heterogeneous nucleation of δ-ferrite by La2SO2, and the solute effect of B due to the high Q-value in ferrite.  相似文献   

2.
New economical duplex stainless steels (DSSs) containing 19Cr-6Mn-xNi-1.0Mo-0.5W-0.5Cu-0.2N (x = 0.5 to 2.0) were developed, and the microstructure, impact property, and corrosion resistance of the alloys were studied. The ferrite content increases with the solution treatment temperature, but decreases with an increase in nickel. The sigma phase is not found precipitating in the alloys treated with solution from 1023 K to 1523 K (750 °C to 1250 °C). The low-temperature impact energy of the experimental alloys increases first and then decreases rapidly with an increase in nickel, which is mainly due to the martensite transformation with an increase in austenite. The alloys have a better mechanical property and pitting corrosion resistance than AISI 304. Among the designed DSS alloys, 19Cr-6Mn-1.3Ni-1.0Mo-0.5W-0.5Cu-0.2N is found to be an optimum alloy with proper phase proportion, a better combination of mechanical strength and elongation, and higher pitting corrosion resistance compared with those of the other alloys.  相似文献   

3.
It has been generally believed that pearlite transformation in hypoeutectoid steels starts when the average carbon concentration in untransformed austenite reaches the Acm line after the formation of proeutectoid ferrite. To test this concept experimentally, volume fractions of proeutectoid ferrite/pearlite and carbon contents in the austenite being transformed into pearlite were measured for the Fe-2Mn-0.3C alloy isothermally transformed in the temperature range 848 K to 898 K (575 °C to 625 °C). It was found that lamellar pearlite can form even when the average carbon content in untransformed austenite is much lower than the Acm line. This peculiar observation is probably due to the two-dimensional diffusion of carbon, i.e., parallel to and normal to the austenite/pearlite interface, which enables lamellar cementite to grow continuously by supplying carbon atoms to its growth front. This results in proeutectoid ferrite fractions with respect to pearlite being much lower than those predicted by the lever rule. With decreasing prior austenite grain size, proeutectoid ferrite fractions with respect to pearlite were found to increase, but the thickness of proeutectoid ferrite was constant within the range of grain size investigated. This is due to the existence of the critical α/γ interface velocity only below which pearlite (actually cementite) can be nucleated at the migrating α/γ interface. Furthermore, the upper limit temperatures for pearlite formation in the Fe-1Mn-0.33C and Fe-2Mn-0.3C alloys were found to be well between the PLE/NPLE and PE Ae1 temperatures.  相似文献   

4.
It has been found possible to increase the strength and toughness of two high-strength stainless steels, AFC 77 and AFC 260, by austenitizing at temperatures that are in the range where both austenite and δ ferrite are stable. The δ ferrite is then removed by isothermal transformation in the range 1800° to 2000°F. This technique results in a greater solution of carbides and intermetallic particles and consequently in a greater amount of retained austenite than is possible at austenitizing temperatures below the δ-ferrite range. In addition, the technique permits optimum mechanical properties to be obtained over a wider compositional range.  相似文献   

5.
The effect of W on dislocation recovery and precipitation behavior was investigated for martensitic 9Cr-(0,l,2,4)W-0.1C (wt pct) steels after quenching, tempering, and subsequent prolonged aging. The steels were low induced-radioactivation martensitic steels for fusion reactor structures, intended as a possible replacement for conventional (7 to 12)Cr-Mo steels. During tempering after quenching, homogeneous precipitation of fine W2C occurred in martensite, causing secondary hardening between 673 and 823 K. The softening above the secondary hardening temperature shifted to higher temperatures with increasing W concentration, which was correlated with the decrease in self-diffusion rates with increasing W concentration. Carbides M23C6 and M7C3 were precipitated in the 9Cr steel without W after high-temperature tempering at 1023 K. With increasing W concentration, M7C3 was replaced by M23C6, and M6C formed in addition to M23C6. During subsequent aging at temperatures between 823 and 973 K after tempering, the recovery of dislocations, the agglomeration of carbides, and the growth of martensite lath subgrains occurred. Intermetallic Fe2W Laves also precipitated in the δ-ferrite grains of the 9Cr-4W steel. The effect of W on dislocation recovery and precipitation behavior is discussed in detail.  相似文献   

6.
7.
In this research, the microstructure evolution, mechanical properties, and creep mechanisms of Mg-12Gd-1MM-0.6Zr (wt%) alloy under different conditions were systematically studied using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and tensile creep tests. Regarding the microstructure of the as-cast sample, the average grain size is about 42 μm, and the eutectic compounds were determined to be Mg5(Gd0.8MM0.2). During homogenization, these eutectic compounds gradually dissolve, and Mg12MM particles are precipitated. During hot extrusion, complete dynamic recrystallization (DRX) occurs, resulting in equiaxial grains with an average grain size of about 12 μm and the formation of streamlines consisting of Mg12MM particles along the extrusion direction (ED). After T5 treatment (225 °C for 7 h), a large number of β′(Mg7Gd) phases are precipitated on the {11–20}α habit plane and are interconnected, forming an interlaced network structure. The ultimate tensile strength (Rm = 405 MPa) and yield strength (RP0.2 = 288 MPa) of the T5 sample are significantly higher than those of the as-extruded sample (Rm = 289 MPa, RP0.2 = 185 MPa), but the elongation (A = 4%) was remarkably lower than that of the as-extruded sample (A = 18%). When crept at 225 °C under 100 MPa, the steady-state creep rates of the as-cast, as-extruded, and T5 samples are 1.59 × 10–8, 1.08 × 10–8, and 1.40 × 10–8 s–1, respectively, and their total strains within 100 h are respectively breaking, 0.81%, and 0.92%, indicating that the as-extruded alloy exhibits the best creep resistance. TEM analysis reveals that, during the creep process of the T5 sample, the β′ particles coarsen and the precipitate-free zones (PFZs) widen, which increase the steady-state creep rate and the total strain within 100 h as compared with the as-extruded sample.  相似文献   

8.
Because of the combination of strength and toughness, much interest has been focused on austempered sintered low-alloyed steels. Implementation of this treatment for powder metal components has been limited by interaction between the open porosity of the material and the cooling fluid. This work discusses the influence of different austempering environments and parameters on the microstructure and, as a consequence, on the final properties. The sintered steels selected are based on two different prealloyed powders, Fe-1.5Cr-0.2Mo and Fe-1.5Mo, with the addition of 0.6 wt pct graphite. Green samples with medium density (7.3 g/cm3) were sintered at 1393 and 1523 K (1120 and 1250 °C) to ensure a decrease in open porosity. The austempering treatment process requires austenitizing at 1133 K (860 °C) for 2 hours followed by quenching in different baths at 563 K (290 °C). The final strength and ductility are dependent upon the relative amounts of ferrite, pearlite, and bainite phases present in the austempered steel. Discussion of the experimental results compares the as-sintered and the austempered observations as well as the relationship between mechanical properties and the phases present in the final microstructures.  相似文献   

9.
10.
Using electrophoretic deposition(EPD) method,the TbF3 powders were deposited on the surface of sintered Nd-Fe-B magnets,and the effects of MgCl2 on electrophoretic deposition and grain boundary diffusion were investigated.The results show that addition of 5 wt% MgCl2 can significantly improve the EPD efficiency and improve the adhesion of the coating by releasing local stress through the formation of special gully morphology.Combining with Biesheuvel equation,the...  相似文献   

11.
Differential thermal analysis (DTA), high-temperature water-quench (WQ) experiments, and optical and electron microscopy were used to establish the near-solidus and solidification microstructures in PH 13-8 Mo. On heating at a rate of 0. 33 °C/s, this alloy begins to transform from austenite to δ-ferrite at ≈1350 °C. Transformation is complete by ≈1435 °C. The solidus is reached at ≈1447 °C, and the liquidus is ≈1493 °C. On cooling from the liquid state at a rate of 0. 33 °C/s, solidification is completed as δ-ferrite with subsequent transformation to austenite beginning in the solid state at ≈1364 °C. Insufficient time at temperature is available for complete transformation and the resulting room-temperature microstructure consists of matrix martensite (derived from the shear decomposition of the austenite) and residual δ-ferrite. The residual δ-ferrite in the DTA sample is enriched in Cr (≈16 wt pct), Mo (≈4 wt pct), and Al (≈1. 5 wt pct) and depleted in Ni (≈4 wt pct) relative to the martensite (≈12. 5 wt pct Cr, ≈2 wt pct Mo, ≈1 wt pct Al, ≈9 wt pct Ni). Solid-state transformation of δσ γ was found to be quench-rate sensitive with large grain, fully ferritic microstructures undergoing a massive transformation as a result of water quenching, while a diffusionally controlled Widmanstätten structure was produced in air-cooled samples.  相似文献   

12.
13.
We successfully fabricated partial Y substituted NdY-Fe-B magnets with nominal compositions of(Nd1-xYx)13.80Feba1Al0.24Cu0.1B6.04(at%,x=0,0.1,0.2,0.3,0.4) by powder metallurgy process and the magnetic properties as well as service performances of the magnets were also systematically investigated.The phase constituents of the magnets have no obvious variation within the whole range of Y content,while the main phase grain...  相似文献   

14.
The structure, phase composition, and mechanical properties of an austenitic corrosion-resistant high-chromium nitrogen-bearing (~0.5% N) steel are studied in the as-cast state and after homogenizing heat treatment (HT) followed by quenching. The main structural constituents of the as-cast steel are austenite and the σ phase (12%), which forms as an interdendritic metal during solidification, and δ ferrite and M 23C6-type chromium carbides are absent. Homogenizing HT at 1100–1200°C leads to the σ → γ transformation through the stage of the formation of intermediate δ ferrite via the restructuring of the tetragonal into the bcc lattice. Upon long-term homogenizing HT, the chromium concentration in ferrite decreases due to diffusion chromium redistribution and the δ → γ transformation takes place. The austenite in both the as-cast steel and the steel subjected to homogenizing HT followed by water quenching contains numerous (Cr, V)N nanoparticles. The twofold yield strength of this steel (~400 MPa) as compared to nitrogen-free 18Cr-10Ni-type steels can be explained by not only the solid-solution hardening of austenite by nitrogen but also by precipitation hardening.  相似文献   

15.
Austenite nucleation and growth is studied during continuous heating using three-dimensional X-ray diffraction (3-D XRD) microscopy at the European Synchrotron Radiation Facility (ESRF) (Grenoble, France). Unique in-situ observations of austenite nucleation and growth kinetics were made for two commercial medium-carbon low-alloy steels (0.21 and 0.35 wt pct carbon with an initial microstructure of ferrite and pearlite). The measured austenite volume fraction as a function of temperature shows a two-step behavior for both steel grades: it starts with a rather fast pearlite-to-austenite transformation, which is followed by a more gradual ferrite-to-austenite transformation. The austenite nucleus density exhibits similar behavior, with a sharp increase during the first stage of the transformation and a more gradual increase in the nucleus density in the second stage for the 0.21 wt pct carbon alloy. For the 0.35 wt pct carbon alloy, no new nuclei form during the second stage. Three different types of growth of austenite grains in the ferrite/pearlite matrix were observed. The combination of detailed separate observations of both nucleation and growth provides unique quantitative information on the phase transformation kinetics during heating, i.e., austenite formation from ferrite and pearlite.  相似文献   

16.
17.
The microstructure of 9Cr-2W-0.25V-0.1C (9Cr-2WV), 9Cr-2W-0.25V-0.07Ta-0.1C (9Cr-2WVTa), 7Cr-2W-0.25V-0.07Ta-0.1C (7Cr-2WVTa), and 5Cr-2W-0.25V-0.07Ta-0.1C (5Cr-2WVTa) steels (all compositions are in wt pct) have been characterized by analytical electron microscopy (AEM) and atom probe field ion microscopy (APFIM). These alloys have potential applications in fusion reactors because they exhibit reduced neutron activation in comparison to the conventional Cr-Mo steels. The matrix in all four alloys was 100 pct martensite. The precipitate type in the steels depended primarily on the chromium level in the alloy. In the two 9Cr steels, the stable phases were blocky M23C6 and small spherical precipitates previously identified as MC. The two lower-chromium steels contained blocky M7C3 and small needle-shaped carbonitrides in addition to M23C6. The AEM and APFIM analyses revealed that, in the steels containing tantalum, the majority of the tantalum was in solid solution. With the exception of a few of the small spherical precipitates in low-number densities in the 9Cr-2WVTa, none of the other precipitates contained measurable tantalum. The experimentally observed phases were in agreement with those predicted by phase equilibria calculations using the ThermoCalc software. However, a similar match between the experimental and predicted values of the phase compositions did not occur in some instances. Atom probe analyses directly confirmed the crucial role of trace amounts of nitrogen in the formation of vanadium-rich carbonitrides as predicted by thermodynamic equilibrium calculations.  相似文献   

18.
The superlattice La-Y-Ni-based hydrogen storage alloys have high discharge capacity and are easy to prepare.However,there is still a gap in commercial applications because of the severe corrosion of the alloys in electrolyte and poor high-rate dischargeability(HRD).Therefore,(LaSmY)(NiMnAl)3.5 alloy was prepared by magnetic levitation induction melting,and then the alloy was coated with different contents(0.1 wt%-1.0 wt%) of nano-carbons by low-temperature sintering with sucrose as th...  相似文献   

19.
20.
研究了1000~1200℃ 1~3 h固溶、淬火或空冷对超低碳奥氏体不锈钢00Cr24Ni13(/%:≤0.02C、23~25Cr、13~14 Ni)200 mm×1 250 mm铸坯8铁素体转变的影响。结果表明,随固溶温度升高和保温时间延长铸坯中δ铁素体量减少;随固溶温度的升高,铸坯中的连续网状δ铁素体断开并且长大,空冷则会促使高温下长大的δ铁素体向小尺寸颗粒状组织转变;当铸坯试样在1 200℃保温3 h空冷后,网状δ铁素体完全转变成弥散分布的小于10μm的颗粒状铁素体组织,δ铁素体相比例也由14.3%降至7.3%。相对于颗粒状铁素体,网状δ铁素体的奥氏体-铁素体两相界面在轧制中更容易产生裂纹。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号