首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 501 毫秒
1.
The composite design strategy for ferro-piezoelectric ceramics has been successfully used to get excellent performances, whereas few studies focus on the electrochemical characteristics of the second phase in the composite. In this work, MgO, due to its high resistance insulation and high breakdown strength, was selected to be compounded with 0.7BiFeO3–0.3BaTiO3 (BFBT) ceramics. Intriguingly, an unreported second phase was derived from the solid-state reaction and identifying its chemical composition as about Mg13Ti3Fe24O55. AC impedance technique was applied to clarify the electrical contribution of the second phase in composites. The results show that it has higher resistivity at the high-temperature stage and more stable capacitance with temperature. Moreover, the second phase can improve the overall dielectric-temperature stability. Ultimately, it indicates composite strategy can bring some beneficial effects on BFBT ceramics, and this present work may provide an alternative route for separating the electrical contribution of different regions for composite ceramics.  相似文献   

2.
《Ceramics International》2022,48(18):26335-26341
Ferroelectric ceramics with large strain response, low hysteresis and high Curie temperature (TC) are required for contemporary displacement actuator. In this work, (1-x)BiFeO3-xBaTiO3 ceramics were synthesized using traditional solid sintering technique. A high electric field-induced strain (0.25%), a relatively low hysteresis (22.5%) and a high Curie temperature (415 °C) were achieved in BiFeO3-0.35BaTiO3 ceramic. Meanwhile, the ceramics exhibited apparent relaxor behavior owing to the local structural heterogeneity. Aberration-corrected scanning transmission electron microscopy revealed that polar nano-regions with multiphase coexistence occur in the material, which is the microstructure origin of the enhanced strain and low hysteresis in BiFeO3-0.35BaTiO3 ceramics. This work indicates that BiFeO3–BaTiO3-based ceramics are good high-temperature ferroelectric materials and are promising candidates for high-precision actuator.  相似文献   

3.
《Ceramics International》2023,49(3):4377-4385
Ecologically sustainable hard type piezoelectric ceramics are highly demanded for high power transducer applications in replacing lead-based piezoelectric ceramics. In this study, MnO was proposed as acceptor dopant to modify the electric properties of 0.75BiFeO3-0.25BaTiO3 piezoelectric ceramics. Results showed that MnO doping reduced the lattice distortion of rhombohedral phase and facilitated the formation of pseudo cubic phase of 0.75BiFeO3-0.25BaTiO3 system. Moreover, it caused the diversity of domain morphology and reduced the domain size as well. XPS analysis indicated that Mn2+ ions suppressed the transition from Fe3+ ions to Fe2+ ions and gave rise to the increase of oxygen vacancies. Accordingly, the introduction of MnO synergistically increases the d33, Kp, and Qm and lowers the tanδ of 0.75BiFeO3-0.25BaTiO3 ceramics. The abnormal enhancement in hard type properties is ascribed mainly to the increase of extrinsic contribution rather than the pinning effect arising from oxygen vacancies. Finally, based on an optimal 0.75Bi(Fe0.985Mn0.015)O3-0.25BaTiO3 system, an atomizer prototype was fabricated. The remarkable atomization effect suggests a competitive potential of 0.75BF-0.25BT ceramic for transducer application.  相似文献   

4.
Solid solutions of BiFeO3 and BaTiO3 are promising lead-free piezoelectric materials, especially around the morphotropic phase boundary at 0.67BiFeO3-0.33BaTiO3. Still, these materials are challenged by phase instability and limited understanding of the processing-properties relationship. Here, we investigate mechanochemical activation and the use of BaTiO3 as seed particles for the 0.67BiFeO3-0.33BaTiO3 phase. Contrary to expectations from seeding in lead-based perovskites, the BaTiO3 seeds do not promote the 0.67BiFeO3-0.33BaTiO3 perovskite phase neither during the mechanochemical activation nor the subsequent sintering, but cause an inhomogeneous structure with remnant BaTiO3. This results in ceramics with weaker low-field piezoelectric response than that of the unseeded route, but with higher field-induced strain, even up to 150 °C. Both routes produce ceramics of high density and without significant secondary phases visible by X-ray diffraction. This demonstrates the advantage of mechanochemical activation and the possibility to tailor the piezoelectric response of 0.67BiFeO3-0.33BaTiO3 through the processing route.  相似文献   

5.
The bulk BiFeO3–BaTiO3 system has been studied as a potential lead‐free high‐temperature piezoelectric material. It is found that the multivalency manganese‐doped 0.8BiFeO3–0.2BaTiO3 ceramics exhibit the coexistence of tetragonal and rhombohedral phases, whereas Mn doping improves the resistivity and exhibits hard characteristic. The optimal properties were obtained at 0.12 wt% Mn addition exhibiting Tc ? 637°C. The increase of Tc in Mn‐modified compositions can be ascribed to the appearance of internal electric bias field by acceptor doping. The combination of good electrical properties and high Tc makes these ceramics suitable for elevated temperature piezoelectric devices.  相似文献   

6.
《Ceramics International》2022,48(15):21061-21070
(1-x) (0.98Na0.5Bi0.5TiO3–0.01BaTiO3–0.01BiFeO3)–xCaTiO3 (NBB-xCT) ceramics were produced using traditional solid-state synthesis methods. The surface morphology, domain structure, and electrical properties of the ceramic samples were systematically studied. In addition, the temperature and frequency stabilities of the NBB-15CT sample at 200 kV/cm were tested. Generally, NBB-xCT ceramics exhibit a typical single perovskite phase structure. The results indicate that the NBB-15CT ceramics showed a high energy density of 3.14 J/cm3 at 250 kV/cm. The piezoresponse force microscopy (PFM) results showed that the addition of CT broke the macrodomains of the 0.98Na0.5Bi0.5TiO3-0.01BaTiO3-0.01BiFeO3 ceramic and helped to form nanodomains, leading to an improved energy storage performance. The above performance indicates that the specimens possess very good temperature-and frequency-dependent energy storage performances at 30–150 °C and 1–100 Hz. Moreover, the electric energy storage and release in the NBB-15CT ceramic indicated that the power density could reach 55.30 MV/cm3 at 180 kV/cm. Therefore, the NBB-15CT ceramic is a promising material for electrical capacitors.  相似文献   

7.
《Ceramics International》2023,49(16):26625-26634
Dielectric capacitors as energy storage electronics have drawn much attention due to ultrahigh power densities with quick charging and discharging rates. In this report, A-site Nd-doped (1-x)BiFeO3-xBaTiO3 (x = 0.2–0.45) relaxor ferroelectric ceramics with superior storage efficiencies were prepared with 0.1 wt% MnO2 additive. Energy-storage efficiency (η) increases from 63.7% to 89% at 190 kV/cm as BaTiO3 increases accompanied by recoverable energy densities (Wrec) in the range of 2.5–2.7 J/cm3. The energy-storage performance persists thermally stable up to 125 °C. The superior storage efficiency is associated with growth of the cubic Pm-3m symmetry and the core-shell structure with increasing BaTiO3 content. The formation of nanocluster/nanomosaic structure also plays an essential role as a barrier in suppressing the long-range polarization order. This work provides a design of binary rare-earth doped BiFeO3–BaTiO3 dielectric ceramics for thermally stable and high-efficiency electrical energy storage.  相似文献   

8.
Lead-free (0.70-x)BiFeO3-0.30BaTiO3-xAgNbO3+5‰mol CuO (abbreviated as BF-BT-xAN) ceramics were fabricated using a modified thermal quenching technique. BF-BT-xAN ceramics are of a perovskite structure with morphotropic phase boundary (MPB) and show strong relaxor properties. Remarkably, the high recoverable energy storage density of 2.11 J/cm3 is obtained for BF-BT-xAN with x = 0.14. For the x = 0.14 ceramics, its energy storage efficiency is as high as 84 % at relative low field of 195 kV/cm, together with an outstanding thermal stability in a broad temperature range from 25 °C to 150 °C. In addition, this ceramic maintains superior energy storage performance even after 8 × 104 electrical cycles due to its high densification after doping Ag2O and Nb2O5. The result suggests that lead-free BF-BT-xAN ceramics may be promising candidate for dielectric energy storage application.  相似文献   

9.
High temperature lead-free piezoceramics of 0.06SrTiO3-0.94[(1-x)BaTiO3- xBiFeO3] were fabricated by the traditional solid state reaction method. The ceramics possess the pure perovskite structures, and a morphotropic phase boundary (MPB) with the pseudo-cubic and rhombohedral phases is observed at x = 0.55-0.71. The ceramics have the obvious relaxor behaviors as confirmed by the temperature and frequency dependent dielectric curves. The largest positive electrostrain (0.25%) under 65 kV/cm is achieved in the ceramics with x = 0.63. The ceramics with x = 0.63 also exhibit a large d33* (425 pm/V) with a high curie temperature (TC =282 °C) and a low hysteresis (43%). The improved electromechanical properties are attributed to the existence of relaxor behavior at BiFeO3-BaTiO3 phase boundary after doping SrTiO3. These results demonstrate that the design of a ternary system like ST-BF-BT based ceramics with relaxor behavior and phase boundary composition provides an effective way to optimize the electrostrain behavior of high temperature lead-free ceramics.  相似文献   

10.
《Ceramics International》2017,43(12):9092-9098
The mechanical behavior of polycrystalline lead-free (1-x)BiFeO3-xBaTiO3 (BF-BT) piezoelectric ceramics was investigated under uniaxial compressive stress from room temperature up to 400 °C with macroscopic stress-strain measurements and in situ stress-dependent neutron diffraction. Stress-strain curves revealed a changing mechanical response with BaTiO3 content and temperature. With decreasing BaTiO3 content there was an increase in the coercive stress, which reduced the remanent strain and hysteresis. Full pattern structural refinement of the neutron data reveals both rhombohedral distortion and magnetic moment decreases with increasing BaTiO3 content. In situ stress-dependent neutron diffraction experiments showed that accommodation of external stress occurs through the changes in tilt magnitude and anisotropy of oxygen octahedra at room temperature. The origin of stress-induced strain at room temperature is a lattice deformation without any apparent change in average crystallographic symmetry or domain switching. Temperature-dependent in situ stress-induced measurement of BF-30BT showed maximum strain close to the rhombohedral - pseudocubic transition temperature, which has been proposed to be due to the lattice deformation as well as to the differing degree of tilting of the (Fe/Ti)O6 octahedra.  相似文献   

11.
A lead–free multiferroic ceramic 0.7BiFeO3–0.3BaTiO3 showed strong ferroelectric and piezoelectric properties, but weak magnetic and magnetoelectric properties. We herein expected that the electrical and magnetic properties of 0.7BiFeO3–0.3BaTiO3 ceramics could be enhanced by introducing LaFeO3. (0.7–x) BiFeO3–0.3BaTiO3xLaFeO3 (x?=?0–0.2) were synthesized by solid-state reaction. All the ceramics formed a perovskite structure, and a morphotropic phase boundary (MPB) between rhombohedral and orthorhombic phases formed at x?=?0.025. The ceramics with MPB composition had high unipolar strain (Smax = 0.14%), piezoelectricity (d33 = 223 pC/N, d33 * = 350?pm/V), ferroelectricity (Pr = 25.67 mC/cm2) and magnetoelectricity (aME = 466.6?mV/cm·Oe), which can be attributed to addition of La ions. The improved phase angle also demonstrated augmentation of ferroelectricity on the microscopic view. The ferromagnetism was evidently improved after LaFeO3 doping, and the remanent magnetization Mr increased from 0.0207 to 0.0622?emu/g with rising x from 0 to 0.075. In conclusion, with strong magnetoelectric properties, the prepared ceramics may be applicable as promising lead–free multiferroic ceramic materials for novel electronic devices.  相似文献   

12.
《Ceramics International》2021,47(22):31349-31356
BiFeO3–BaTiO3 solid solutions with pseudo-cubic phase have received a lot of attention because of their large strain for potential piezoelectric multilayer actuator applications. However, the high sintering temperature, large dielectric loss and severe strain hysteresis hindered their real applications. In this work, Li2CO3 sintering aid modified 0.64BiFeO3-0.36BaTiO3 (BF-BT-L) ceramics were prepared by the high-temperature sintering method, and their phase structure, microstructure, electric properties as well as strain were investigated. With the increase of Li2CO3 content, the sintering temperature decreases down to 900 °C, and the relative density increases up to 96%. Of particular importance is that the dielectric loss and strain hysteresis of BF-BT-L ceramics are reduced by 40% and 47%, respectively, while BF-BT-L ceramics shows a large strain of 0.3% (60 kV/cm). The sintering temperature, relative density, strain, large-signal d33* and strain hysteresis of BF-BT-L ceramics are 900 °C, 96.5%, 0.3%, 500 pm/V, and 25% respectively. The reduced dielectric loss and strain hysteresis result from the enhanced relative density, decreased concentration of defects and partial phase transition from partial pseudo-cubic to rhombohedral one by Li2CO3 additions. Furthermore, BF-BT-L ceramics show positive temperature dependent strain, with large d33* and strain hysteresis of 675 pm/V and 15% at 200 °C respectively. The simple composition, low sintering temperature, large strain and reduced strain hysteresis of BF-BT-L ceramics indicate that they are promising candidates for high-performance and lead-free piezoelectric multilayer actuator applications.  相似文献   

13.
The high-temperature and high-performance piezoelectric ceramics are required urgently in the petrochemical, automotive, and aerospace industries. In this work, the (0.85-x)BiFeO3-xPbTiO3-0.15BaTiO3 (BF-PT-BT, x = 0.21, 0.22, 0.23, 0.24 and 0.25) piezoelectric ceramics with both high Curie temperature and large piezoelectric constant d33 were presented. X-ray diffraction analysis shows that BF-PT-BT ceramics exhibit dominant perovskite structure with the coexistence of tetragonal (T) and rhombohedral (R) phases. The c/a ratio, Curie temperature, piezoelectric constant, dielectric constant and loss of the BF-PT-BT ceramics for x = 0.23 are 1.06, 546 °C, 222 pC/N, 545 and 0.013, respectively. Room temperature piezoelectric constant of BF-PT-BT ceramics is much higher than those of PbTiO3, PbNb2O6 and other ABO3 perovskite compounds (BaZrO3, Bi(Zn, Ti)O3, PbZrO3 and Pb(Mg, Nb)O3) modified ternary BiFeO3-PbTiO3 ceramics with similar Curie temperatures. The piezoelectric constant is almost unchanged after BF-PT-BT ceramics was annealed at 450 °C for 30 min, which is due to the stable switched non-180° domain and transformed R phase by annealing treatment.  相似文献   

14.
《Ceramics International》2022,48(9):12800-12805
Perovskite solid solution materials, namely, 0.67BiFeO3-0.33BaTiO3, were synthesized by spark plasma sintering method. The effects of the spark plasma sintering temperature on phase purity, microstructure, and electric properties of the as-prepared materials were investigated. The materials could be referred as pseudocubic phases based on the X-ray diffraction patterns. The bulk density first increased and then decreased. The 880 °C-sintered-ceramics had the maximal density and a compact microstructure with grain size of 0.77 ± 0.34 μm. The dielectric constant as a function of temperature exhibited a broad peak. At the optimal spark-plasma-sintering temperature, enhanced ferroelectric properties were observed with a value of Pr ~ 21 μC/cm2. This investigation on the spark plasma sintering process confirms it as an efficient approach to prepare outstanding performance BiFeO3–BaTiO3 ceramics.  相似文献   

15.
A series of novel lead-free energy storage ceramics, (0.67-x)BiFeO3-0.33BaTiO3-xBaBi2Nb2O9 (BF-BT-xBBN), were fabricated by traditional solid-state reaction, where bismuth layer-structured BaBiNb2O9 was incorporated into perovskite-structured BiFeO3–BaTiO3 ceramic as an additive. The addition of BaBi2Nb2O9 increased the relaxor behavior and breakdown strength of BF-BT ceramics due to the formation of polar nanoregionals (PNRs), inducing enhanced energy storage performance. The composite ceramics, with x = 0.08, showed a large recoverable energy density (Wrec) of 3.08 J/cm3 and an outstanding energy storage efficiency (η) of 85.57% under an applied electric field of 230 kV/cm. Moreover, the composite ceramics exhibited excellent thermal stability and high stability toward different frequencies in a temperature range of 20–100 °C and a frequency range of 0.1–1500 Hz. These results demonstrate great potential of novel BF-BT-xBBN composite ceramics for next-generation energy storage applications.  相似文献   

16.
Even though BiFeO3–BaTiO3 (BF–BT) with high Curie temperature and excellent piezoelectric properties is very suitable for high-temperature applications, its rapid reduction in resistivity with temperature limits its further application. So far, there is no effective method to improve the resistivity of BF–BT at a high-temperature state. In this work, hot-press sintering combined with an oxygen atmosphere was used to prepare (1 − x)BF–xBT (x = 0.2–0.33) ceramics for the first time, which reduced the sintering temperature from 1000 to 920°C. The controllable grain size can be achieved by adjusting the sintering temperature and the applied pressure. The X-ray photoelectron spectroscopy results confirmed that using hot-press sintering effectively avoided the generation of heterovalent Fe ions, and the resistivity of BF–BT ceramics at the high-temperature stage was improved by two orders of magnitude. It was found that hot-press sintering can cause the oriented growth of the sample along the (1 1 0) direction, and further refined X-ray diffraction was used to accurately analyze the changes in the lattice structure. The hot-press sintered samples obtained larger polarization strength, especially the electro-induced strain showed excellent temperature stability in the wide temperature range of 30–170°C. Hot-pressing sintering combined with an oxygen atmosphere is more suitable for preparing high insulation and electrical breakdown resistance ceramics.  相似文献   

17.
Low temperature conductivity mechanisms were identified in acceptor‐doped BaTiO3 single crystals equilibrated and quenched from high temperature under different oxygen partial pressures. A range of acceptor ionization states were quenched into samples doped with manganese or iron. Using an appropriate equivalent circuit to interpret impedance spectroscopy data, room temperature conductivity mechanisms in the single crystal samples were identified, and the permittivity/temperature dependence was also shown to be self‐consistent with the nature of a first‐order ferroelectric phase transition. The primary, low temperature, conduction mechanism in acceptor‐doped BaTiO3 was determined to be dominated by the migration of oxygen vacancies. The activation energy for oxygen vacancy migration was experimentally determined to have a value of nearly 0.7 eV. This activation energy represents an intrinsic value for vacancy hopping and confirms our previous work that revealed minimal interaction between acceptor dopants and oxygen vacancies in BaTiO3 in contrast to the well‐documented evidence of defect association in SrTiO3.  相似文献   

18.
BaTiO3-Cu composite powders were prepared via an alkoxide-mediated synthesis approach. As-synthesized BaTiO3 nanoparticles were as small as 40 nm and coated partially larger Cu particles of approximately 1 μm in size. Thermogravimetric analysis (TGA) and dilatometry revealed a gradual increase in weight loss and retarded shrinkage with the increase of Cu addition. BaTiO3-Cu composites were successfully densified by spark plasma sintering (SPS). The microstructures show an average grain-size for BaTiO3 of around 100 nm and a crystallite size of about 1 μm for the Cu inclusions. The AC conductivity of the BaTiO3-Cu composites increased with increasing Cu content or with temperature. The dominant electrical conduction mechanism in SPSed BaTiO3-Cu composites changed from migration of oxygen vacancies to band conduction of trapped electrons in oxygen vacancies with the increase of Cu content.  相似文献   

19.
This article considers the diverse substitutional effects of the Sn cations in the BaTiO3 lattice and its impact on the electrical conduction as a function of A/B stoichiometry, oxygen partial pressure, and temperature. High‐density specimens were fabricated in the different oxygen partial pressures to control the valence state of Sn ion. Specifically, the nonstoichiometric materials were sintered in a low pO2 atmosphere (10?14 atm at 1320°C) and in a high pO2 atmosphere (10?0.21 atm at 1320°C), respectively. It is found that Sn occupying the Ti‐site acts as an acceptor dopant, and the electronic conductivity varies from a n‐type to p‐type transition, with increasing oxygen activity as mostly expected. However, there is an unusual case noted with Sn doping the A‐site where the conductivity, σ, is invariant at high pO2's, i.e., σ ~  with m ≈ 0 in the high pO2 regime. The variation of the conductivity is explained by a valence changing of Sn ion from +2 to +3 to +4 with increasing oxygen partial pressure, and we model this data across all conditions within a self‐consistent defect chemistry model.  相似文献   

20.
BiFeO3-BaTiO3 ceramics are promising lead-free piezoelectric ceramics due to their high piezoelectric properties and high Curie temperature, but their high leakage current density makes the poling difficult. In this study, a decreased leakage current density by three orders of magnitude was obtained in Bi0.5Na0.5TiO3 (BNT) added 0.67BiFeO3-0.33BaTiO3 (BF-BT) ceramics. It was found that the largely improved insulating properties benefit from the reduced oxygen vacancies and weak reduction of Fe3+ to Fe2+ as confirmed by photoluminescence and X-ray photoelectron spectroscopy measurements, thereby contributing to high-temperature and high-field poling. In addition, the introduction of BNT leaded to increased grain size. Due to the grown grains as well as reduced oxygen vacancies and Fe2+, enhanced insulating and optimal piezoelectric properties with Pr = 24.2 µC/cm2, d33 = 183 pC/N, kp = 0.28, and TC = 467°C were achieved in BF-BT-0.05BNT ceramics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号