首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
In present study we determined the long term in vivo integration and histological modeling of an in vitro engineered cartilage construct. Tissue engineered autologous cartilagenous tissue was cultured on calcium phosphate cylinders and implanted into osteochondral defects into the femoral condyles in minipigs. Radiological follow-up was performed at 2, 8, 26 and 52 weeks, condyles were harvested 26 and 52 weeks post-implantation. Thickness of cultivated tissue (1.10 ± 0.55 mm) was comparable to in situ cartilage and cells produced in vitro cartilage specific proteins. In vivo, 26 and 52 weeks post-implantation defects were resurfaced with hyaline-like tissue, the implants were well integrated with no gap at the interface between the engineered neocartilage and the adjacent articular cartilage. Synthesis of type II collagen was detected 26 and 52 weeks after implantation. The modified ICRS score increased from 26 to 52 weeks. Histomorphometric evaluation revealed a decrease in cellularity in tissue engineered cartilage from 2.2-fold of native cartilage after 26 weeks to 1.5-fold after 52 weeks. In conclusion, these findings demonstrate the integration and maturation of tissue engineered cartilage pellets attached on a bone substitute carrier implanted in osteochondral defects over a long time. J. P. Petersen, P. Ueblacker, C. Goepfert have contributed equally to this study.  相似文献   

2.
Carbon nanotubes have been considered as a promising means of enhancing the properties of advanced composites in a range of polymer systems. Expected property enhancements include high strength and stiffness, improved toughness, impact and through-thickness properties. Z-axis properties like shear strength are of special interest for laminated composite structures subjected to transverse loads. This paper reports the processing of a glass fiber reinforced vinyl ester composite with nanotube integration and examines the reinforcement potential on interlaminar shear strength. Several sidewall functionalized nanotube derivatives were also prepared in order to obtain high dispersion and matrix bonding. Carbon nanotube enhanced vinyl ester/glass fiber composites were fabricated by a vacuum assisted resin transfer molding process. Overcoating the glass fiber weave with nanotubes and processing modification led to enhancement of the interface properties. A maximum of 45% increase in shear strength over control sample was observed on several types of nanotubes with a very small amount of nanotubes (0.015 wt%) coated in the midplane ply.  相似文献   

3.
陈曦  徐龙河  肖水晶 《工程力学》2021,38(9):100-109
为了准确模拟碟簧装置和自复位RC剪力墙的力学性能,对碟簧装置的工作原理和力学特性进行了分析,提出并开发了碟簧装置恢复力模型,通过试验验证了恢复力模型的准确性。在低周往复荷载作用下,对内置碟簧装置的自复位RC剪力墙的滞回性能进行数值模拟,并与试验结果进行了对比。结果表明:应用碟簧装置恢复力模型的数值模型可有效模拟自复位RC剪力墙的滞回特性、自复位性能及耗能能力。自复位RC剪力墙的承载力随碟簧预压力、附加摩擦力及碟簧装置刚度的增大而增大;耗能能力随附加摩擦力的增大而增大;残余位移随附加摩擦力的增大而增大,随碟簧预压力和碟簧装置刚度的增大而减小。  相似文献   

4.
Abstract

We have investigated the effectiveness and safety of a newly developed biological adhesive for repair of meniscal tear. The adhesive was composed of disuccinimidyl tartrate (DST) as a crosslinker and human serum albumin (HSA) as a hardener. To determine adequate concentration, bonding strength was measured using a tensiometer 5 min after applying the adhesive on the avascular zone tear of porcine meniscus; it was compared with the strengths of commercially available cyanoacrylate-based and fibrin-based adhesives. In vivo examination was performed using Japanese white rabbits, creating longitudinal tears on the avascular zone of meniscus and applying DST–HSA adhesive. Three months after operation the rabbits were sacrificed and tension test and histological evaluation were performed. Bonding strength was measured in three porcine meniscus groups: (i) only suturing, (ii) suturing after applying the adhesive on surface and (iii) suturing using an adhesive-soaked suture. The optimum concentrations were 0.1 mmol of DST and 42 w/v% of HAS. Bonding strength was greatest with cyanoacrylate-based adhesive, followed by DST–HSA adhesive, and fibrin-based adhesive. No inflammation was observed in the synovium or surrounding tissues 3 months after using the DST–HSA adhesive. Bonding strength was greatest with DST–HSA adhesive-soaked suturing group (77 ± 6 N), followed by suturing only group (61 ± 5 N) and surface adhesive application group (60 ± 8 N). The newly developed DST-HSA adhesive is considered safe and may be effective in enforcement of bonding of avascular zone tear of the meniscus.  相似文献   

5.
Due to their natural biochemical and biomechanical characteristics, using ex vivo tissues as platforms for guided tissue regeneration has become widely accepted, however subsequent attachment and integration of these constructs in vivo is often overlooked. A decellularized porcine temporomandibular joint (TMJ) disc has shown promise as a scaffold to guide disc regeneration and preliminary work has shown the efficacy of surfactant (SDS) treatment within the fibrocartilaginous disc to remove cellular components. The majority of studies focus on the intermediate region of the disc (or disc proper). Using this approach, inherent attachment tissues can be maintained to improve construct stability and integration within the joint. Unlike human disc attachment tissue, the porcine attachment tissues have high lipid content which would require a different processing approach to remove immunogenic components. In order to examine the effect of delipidation on the attachment tissue properties, SDS and two organic solvent mixtures (acetone/ethanol and chloroform/methanol) were compared. Lipid and cellular solubilization, ECM alteration, and seeded human mesenchymal stem cell (MSC) morphology and viability were assessed. Quantitative analysis showed SDS treatments did not effectively delipidate the attachment tissues and cytotoxicity was noted toward MSC in these regions. Acetone/ethanol removed cellular material but not all lipids, while chloroform/methanol removed all visible lipid deposits but residual porcine cells were observed in histological sections. When a combination of approaches was used, no residual lipid or cytotoxicity was noted. Preparing a whole TMJ graft with a combined approach has the potential to improve disc integration within the native joint environment.  相似文献   

6.
Tissue engineering (TE) may provide effective alternative treatment for challenging temporomandibular joint (TMJ) pathologies associated with disc malpositioning or degeneration and leading to severe masticatory dysfunction. Aim of this study was to evaluate the potential of chitosan/alginate (Ch/Alg) scaffolds to promote fibro/chondrogenic differentiation of dental pulp stem cells (DPSCs) and production of fibrocartilage tissue, serving as a replacement of the natural TMJ disc. Ch/Alg scaffolds were fabricated by crosslinking with CaCl2 combined or not with glutaraldehyde, resulting in two scaffold types that were physicochemically characterized, seeded with DPSCs or human nucleus pulposus cells (hNPCs) used as control and evaluated for cell attachment, viability, and proliferation. The DPSCs/scaffold constructs were incubated for up to 8 weeks and assessed for extracellular matrix production by means of histology, immunofluorescence, and thermomechanical analysis. Both Ch/Alg scaffold types with a mass ratio of 1:1 presented a gel-like structure with interconnected pores. Scaffolds supported cell adhesion and long-term viability/proliferation of DPSCs and hNPCs. DPSCs cultured into Ch/Alg scaffolds demonstrated a significant increase of gene expression of fibrocartilaginous markers (COLI, COL X, SOX9, COM, ACAN) after up to 3 weeks in culture. Dynamic thermomechanical analysis revealed that scaffolds loaded with DPSCs significantly increased storage modulus and elastic response compared to cell-free scaffolds, obtaining values similar to those of native TMJ disc. Histological data and immunochemical staining for aggrecan after 4 to 8 weeks indicated that the scaffolds support abundant fibrocartilaginous tissue formation, thus providing a promising strategy for TMJ disc TE-based replacement.  相似文献   

7.
We have investigated the effectiveness and safety of a newly developed biological adhesive for repair of meniscal tear. The adhesive was composed of disuccinimidyl tartrate (DST) as a crosslinker and human serum albumin (HSA) as a hardener. To determine adequate concentration, bonding strength was measured using a tensiometer 5 min after applying the adhesive on the avascular zone tear of porcine meniscus; it was compared with the strengths of commercially available cyanoacrylate-based and fibrin-based adhesives. In vivo examination was performed using Japanese white rabbits, creating longitudinal tears on the avascular zone of meniscus and applying DST–HSA adhesive. Three months after operation the rabbits were sacrificed and tension test and histological evaluation were performed. Bonding strength was measured in three porcine meniscus groups: (i) only suturing, (ii) suturing after applying the adhesive on surface and (iii) suturing using an adhesive-soaked suture. The optimum concentrations were 0.1 mmol of DST and 42 w/v% of HAS. Bonding strength was greatest with cyanoacrylate-based adhesive, followed by DST–HSA adhesive, and fibrin-based adhesive. No inflammation was observed in the synovium or surrounding tissues 3 months after using the DST–HSA adhesive. Bonding strength was greatest with DST–HSA adhesive-soaked suturing group (77 ± 6 N), followed by suturing only group (61 ± 5 N) and surface adhesive application group (60 ± 8 N). The newly developed DST-HSA adhesive is considered safe and may be effective in enforcement of bonding of avascular zone tear of the meniscus.  相似文献   

8.
There is currently no suitable replacement for damaged temporomandibular joint (TMJ) discs after discectomy. In the present study, we fabricated bilayer biodegradable polylactide (PLA) discs comprising a non-woven mat of poly(L/D)lactide (P(L/D)LA) 96/4 and a P(L/DL)LA 70/30 membrane plate. The PLA disc was examined in combination with adipose stem cells (ASCs) for tissue engineering of the fibrocartilaginous TMJ disc in vitro. ASCs were cultured in parallel in control and chondrogenic medium for a maximum of six weeks. Relative expression of the genes, aggrecan, type I collagen and type II collagen present in the TMJ disc extracellular matrix increased in the ASC-seeded PLA discs in the chondrogenic medium. The hypertrophic marker, type X collagen, was moderately induced. Alcian blue staining showed accumulation of sulphated glycosaminoglycans. ASC differentiation in the PLA discs was close to that observed in pellet cultures. Comparison of the mRNA levels revealed that the degree of ASC differentiation was lower than that in TMJ disc-derived cells and tissue. The pellet format supported the phenotype of the TMJ disc-derived cells under chondrogenic conditions and also enhanced their hyalinization potential, which is considered part of the TMJ disc degeneration process. Accordingly, the combination of ASCs and PLA discs has potential for the development of a tissue-engineered TMJ disc replacement.  相似文献   

9.
The surface material and surface structure of orthopaedic implants are considered to be key parameters for clinical success. The goal of this study was to assess mechanical and histological aspects of uncoated and coated polymer plugs implanted transcortically into the femurs of rabbits for 6, 9, and 12 weeks. Cylindrical plugs (diameter 3×12 mm) made of ultra-high molecular weight polyethylene (UHMW-PE) or polyoxymethylene (POM) uncoated or coated with hydroxyapatite (HA) or titanium (Ti) were analysed in a push-out test to determine the interface shear strength. Compared to uncoated PE plugs, coated PE implants were always significantly better in interface strength (up to a factor of 20). HA-coated PE plugs reached their final shear strength after a shorter period of implantation (at 6 weeks) than Ti-coated plugs, but both finally yielded the same strength (at 12 weeks). With a thin Ti-plasma coating, the increase of interface strength of POM plugs was much smaller than the increase found in PE implants coated with a different technique. Microscopic analysis suggested that interface failure initially occurred between coating and bone. Histology revealed a stable, bony integration of all plug types. The increase in interface shear strength could not be explained by histological findings and must be caused mainly by the different surface structures of the implants or coatings.  相似文献   

10.
涂布两种施胶剂对抄制纸板物理性能的影响   总被引:1,自引:1,他引:0  
邬泽凯  李琛 《包装工程》2017,38(7):86-91
目的对涂布氧化淀粉胶纸板、聚乙烯醇胶纸板和未涂布纸板的耐破强度、戳穿强度、挺度、防水防潮性等物理性能进行研究。方法实验选用表面施胶的方法来增强纸板的物理性能。通过抄制不同定量的化学机械浆和化学浆纸板,在纸板表面涂布相同体积的氧化淀粉胶和聚乙烯醇胶,测试纸板的物理性能。结果在相同温度、相对湿度条件下涂布施胶剂的纸板,其耐破强度、戳穿强度、挺度和防水防潮性要优于未涂布纸板;涂布聚乙烯醇的纸板其耐破强度、戳穿强度和防水防潮性要优于涂布氧化淀粉胶的纸板,涂布氧化淀粉胶的纸板挺度要优于涂布聚乙烯醇胶的纸板。结论涂布施胶剂后纸板的物理性能均有所提高,涂布聚乙烯醇胶的纸板强度较强,涂布氧化淀粉胶的纸板韧性较好。  相似文献   

11.
This study determined the effects of exogenous hyaluronic acid (HA) on the biomechanical and biochemical properties of self-assembled bovine chondrocytes, and investigated biophysical and genetic mechanisms underlying these effects. The effects of HA commencement time, concentration, application duration and molecular weight were examined using histology, biomechanics and biochemistry. Additionally, the effects of HA application on sulphated glycosaminoglycan (GAG) retention were assessed. To investigate the influence of HA on gene expression, microarray analysis was conducted. HA treatment of developing neocartilage increased compressive stiffness onefold and increased sulphated GAG content by 35 per cent. These effects were dependent on HA molecular weight, concentration and application commencement time. Additionally, applying HA increased sulphated GAG retention within self-assembled neotissue. HA administration also upregulated 503 genes, including multiple genes associated with TGF-β1 signalling. Increased sulphated GAG retention indicated that HA could enhance compressive stiffness by increasing the osmotic pressure that negatively charged GAGs create. The gene expression data demonstrate that HA treatment differentially regulates genes related to TGF-β1 signalling, revealing a potential mechanism for altering matrix composition. These results illustrate the potential use of HA to improve cartilage regeneration efforts and better understand cartilage development.  相似文献   

12.
Tissue engineering seeks to repair or regenerate tissues through combinations of implanted cells, biomaterial scaffolds and biologically active molecules. The rapid restoration of tissue biomechanical function remains an important challenge, emphasizing the need to replicate structural and mechanical properties using novel scaffold designs. Here we present a microscale 3D weaving technique to generate anisotropic 3D woven structures as the basis for novel composite scaffolds that are consolidated with a chondrocyte-hydrogel mixture into cartilage tissue constructs. Composite scaffolds show mechanical properties of the same order of magnitude as values for native articular cartilage, as measured by compressive, tensile and shear testing. Moreover, our findings showed that porous composite scaffolds could be engineered with initial properties that reproduce the anisotropy, viscoelasticity and tension-compression nonlinearity of native articular cartilage. Such scaffolds uniquely combine the potential for load-bearing immediately after implantation in vivo with biological support for cell-based tissue regeneration without requiring cultivation in vitro.  相似文献   

13.
We have developed a nuclear magnetic resonance (NMR)-compatible hollow fiber chondrocyte bioreactor (HFBR), permitting the noninvasive study of neocartilage under conditions optimized for cell growth and matrix expression. The system was used to investigate the properties of neocartilage which developed from embryonic chick chondrocytes. Histologic studies performed 30 days after inoculation of the HFBR with chondrocytes showed cartilage growth units demarcated by stromal layers surrounding each fiber; the tissue itself was highly cellular with abundant proteoglycan content. Spin-density, spin-lattice, and spin-spin relaxation and magnetization transfer contrast images revealed heterogeneous tissue with NMR properties that correlated well with histologic data. It was found that the apparent free water content of the neocartilage was greater than that seen in mature cartilage, even in regions of relatively low cell density. The bioenergetic profile of the cells in culture was monitored with 31P-NMR spectroscopy, and the presence of phosphocreatine was clearly demonstrated. Overall metabolic stability was confirmed between days 10 and 17 after inoculation. A significant decrease in intracellular pH with time was observed during early development of the chondrocyte system. © 1997 John Wiley & Sons, Inc. Int J Imaging Syst Technol, 8, 285–292, 1997  相似文献   

14.
赵根田  侯智译  高鹏  王达 《工程力学》2020,37(7):201-213
为研究低周往复荷载作用下群钉连接件的劣化过程和退化机理,以栓钉直径、混凝土强度等级、加载方式为参数设计9个试件进行试验,并采用ABAQUS进行精细分析,研究群钉抗剪连接件的破坏模式、刚度退化、损伤累积、抗剪承载力及能量耗散等指标。结果表明:混凝土强度相同时,试件的抗剪承载力随栓钉直径的增加而提高,而抗剪刚度和能量耗散等指标变化不明显。对于直径较大的栓钉,各项性能指标还会出现劣化。混凝土强度增加,试件的抗剪承载力和抗剪刚度提高,耗能增加,滑移值减小。低应力循环加载时,试件较早出现损伤累积,其损伤累积速度随栓钉直径的增大而增加。高应力循环加载时,试件表现出损伤累积滞后现象,在第3个循环节开始出现损伤快速累积。群钉多层排列时,栓钉传力不均匀,靠近加载端的栓钉承担的剪力大于其他栓钉。当混凝土强度在C35和C45之间时,建议采用直径16 mm的栓钉与之搭配。  相似文献   

15.
A linearly polarized ultrasonic shear wave propagating in fiber-reinforced composites produces an elliptical vibration pattern due to birefringence. The acoustic birefringence of shear waves is analyzed and applied for evaluation of in-plane stiffness anisotropy of uni-axial nonfabric, biaxial, and quadra-axial fabric composite materials. The parameters of the elliptical motion are determined by measurements of the amplitude and phase of the transmitted/reflected shear wave as functions of the receiver polarization angle. The strength of birefringence is derived from the measured elliptical pattern and used to quantify the in-plane stiffness asymmetry in glass and carbon fiber-reinforced nonfabric and fabric composites. The technique is shown to be sensitive enough to detect damage induced variation in stiffness anisotropy. The correlation between the asymmetry of shear stiffness and orientation of impact cracking in composites is also discussed.  相似文献   

16.
Currently, numerous hydrogels are under examination as potential nucleus replacements. The clinical success, however, depends on how well the mechanical function of the host structure is restored. This study aimed to evaluate the extent to and mechanisms by which surgery for nucleus replacements influence the mechanical behaviour of the disc. The effects of an annulus defect with and without nucleus replacement on disc height and nucleus pressure were measured using 24 ovine motion segments. The following cases were considered: intact; annulus incision repaired by suture and glue; annulus incision with removal and re-implantation of nucleus tissue repaired by suture and glue or plug. To identify the likely mechanisms observed in vitro, a finite-element model of a human disc (L4–L5) was employed. Both studies were subjected to physiological cycles of compression and recovery. A repaired annulus defect did not influence the disc behaviour in vitro, whereas additional nucleus removal and replacement substantially decreased disc stiffness and nucleus pressure. Model predictions demonstrated the substantial effects of reductions in replaced nucleus water content, bulk modulus and osmotic potential on disc height loss and pressure, similar to measurements. In these events, the compression load transfer in the disc markedly altered by substantially increasing the load on the annulus when compared with the nucleus. The success of hydrogels for nucleus replacements is not only dependent on the implant material itself but also on the restoration of the environment perturbed during surgery. The substantial effects on the disc response of disruptions owing to nucleus replacements can be simulated by reduced nucleus water content, elastic modulus and osmotic potential.  相似文献   

17.
碳/碳复合材料疲劳损伤失效试验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
对单向碳/碳复合材料纵向拉-拉疲劳特性及面内剪切拉-拉疲劳特性进行了试验研究; 对三维四向编织碳/碳复合材料的纵向拉-拉疲劳特性及纤维束-基体界面剩余强度进行了试验研究。使用最小二乘法拟合得到了单向碳/碳复合材料纵向及面内剪切拉-拉疲劳加载下的剩余刚度退化模型及剩余强度退化模型, 建立了纤维束-基体界面剩余强度模型。结果显示: 单向碳/碳复合材料在87.5%应力水平的疲劳载荷下刚度退化最大只有8.8%左右, 在70.0%应力水平的疲劳载荷下, 面内剪切刚度退化最大可达30%左右; 三维四向编织碳/碳复合材料疲劳加载后强度及刚度均得到了提高; 随着疲劳循环加载数的增加, 三维四向编织碳/碳复合材料中纤维束-基体界面强度逐渐减弱。   相似文献   

18.
An analytical model for the compressive and shear response of monolithic and hierarchical corrugated composite cores has been developed. The stiffness model considers the contribution in stiffness from the bending- and the shear deformations of the core members in addition to the stretching deformation. The strength model is based on the normal stress and shear stress distribution over each core member when subjected to a shear or compressive load condition. The strength model also accounts for initial imperfections. In part 1 of this series, the analytical model is described and the results are compared to finite element predictions. In part 2, the analytical model is compared to experimental results and the behaviour of the corrugated structures is investigated more thoroughly using failure mechanism maps.  相似文献   

19.
Articular cartilage damage is of great concern as it creates chronic pain and reduction of joint movement, leading to osteoarthritis. In current treatments, the resulting healing tissues lack structural organisation of cartilage and consequently have inferior mechanical properties when compared to native cartilage, therefore being prone to failure. Tissue engineering has long worked on cartilage regeneration and several requirements have been identified for the engineered structures to meet the desired function, by combining biodegradable and biocompatible materials, cells and growth factors, aiming at the production of biological structures closely resembling the native tissue. Within the scaffold based techniques for cartilage tissue production, conventional methods have shown limitations, especially regarding the control over the micro-structure and repeatability of the produced constructs. Therefore, additive manufacturing techniques grew popular, allowing for a high level of control over the internal scaffold architecture and external shape of the construct, as well as guaranteeing its reproducibility.  相似文献   

20.
In this paper, a novel reduced integration eight‐node solid‐shell finite element formulation with hourglass stabilization is proposed. The enhanced assumed strain method is adopted to eliminate the well‐known volumetric and Poisson thickness locking phenomena with only one internal variable required. In order to alleviate the transverse shear and trapezoidal locking and correct rank deficiency simultaneously, the assumed natural strain method is implemented in conjunction with the Taylor expansion of the inverse Jacobian matrix. The projection of the hourglass strain‐displacement matrix and reconstruction of its transverse shear components are further employed to avoid excessive hourglass stiffness. The proposed solid‐shell element formulation successfully passes both the membrane and bending patch tests. Several typical examples are presented to demonstrate the excellent performance and extensive applicability of the proposed element. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号