首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Colon cancer is one of the most common tumors of the digestive tract. Resistance to ionizing radiation (IR) decreased therapeutic efficiency in these patients’ radiotherapy. XRCC2 is the key protein of DNA homologous recombination repair, and its high expression is associated with enhanced resistance to DNA damage induced by IR. Here, we investigated the effect of XRCC2 silencing on colon tumor cells’ growth and sensitivity to X-radiation in vitro and in vivo. Colon tumor cells (T84 cell line) were cultivated in vitro and tumors originated from the cell line were propagated as xenografts in nude mice. The suppression of XRCC2 expression was achieved by using vector-based short hairpin RNA (shRNA) in T84 cells. We found that the knockdown of XRCC2 expression effectively decreased T84 cellular proliferation and colony formation, and led to cell apoptosis and cell cycle arrested in G2/M phase induced by X-radiation in vitro. In addition, tumor xenograft studies suggested that XRCC2 silencing inhibited tumorigenicity after radiation treatment in vivo. Our data suggest that the suppression of XRCC2 expression rendered colon tumor cells more sensitive to radiation therapy in vitro and in vivo, implying XRCC2 as a promising therapeutic target for the treatment of radioresistant human colon cancer.  相似文献   

2.
MicroRNAs play important roles in laryngeal carcinoma and other cancers. However, the expression of microRNAs in paracancerous tissue has been studied less. Here, using laser capture microdissection (LCM), we detected the expression of microRNAs in paracancerous tissues. Among all down-regulated microRNAs in the center area of tumor tissues, only miR-30b expression was significantly reduced in paracancerous tissues compared to surgical margins. Therefore, to further investigate the effect of miR-30b on laryngeal carcinoma, we stably overexpressed miR-30b in laryngeal carcinoma cell line HEp-2 cells. It was found that although there was no significant difference in cell viability between miR-30b overexpressed cells and control HEp-2 cells, p53 expression was obviously enhanced in miR-30b overexpressed cells. Whether miR-30b could improve the anti-tumor effect of adenovirus-p53 (Ad-p53) in laryngeal carcinoma and other cancer cell lines was also evaluated. It was found that in miR-30b overexpressed HEp-2 cells, p53-mediated tumor cell apoptosis was obviously increased both in vitro and in vivo. MDM2-p53 interaction might be involved in miR-30b-mediated anti-tumor effect. Together, results suggested that miR-30b could modulate p53 pathway and enhance p53 gene therapy-induced apoptosis in laryngeal carcinoma, which could provide a novel microRNA target in tumor therapy.  相似文献   

3.
Tumor protein 53-induced nuclear protein-1 (TP53inp1) is expressed by activation via p53 and p73. The purpose of our study was to investigate the role of TP53inp1 in response of fibroblasts to ionizing radiation. γ-Ray radiation dose-dependently induces the expression of TP53inp1 in human immortalized fibroblast (F11hT) cells. Stable silencing of TP53inp1 was done via lentiviral transfection of shRNA in F11hT cells. After irradiation the clonogenic survival of TP53inp1 knockdown (F11hT-shTP) cells was compared to cells transfected with non-targeting (NT) shRNA. Radiation-induced senescence was measured by SA-β-Gal staining and autophagy was detected by Acridine Orange dye and microtubule-associated protein-1 light chain 3 (LC3B) immunostaining. The expression of TP53inp1, GDF-15, and CDKN1A and alterations in radiation induced mitochondrial DNA deletions were evaluated by qPCR. TP53inp1 was required for radiation (IR) induced maximal elevation of CDKN1A and GDF-15 expressions. Mitochondrial DNA deletions were increased and autophagy was deregulated following irradiation in the absence of TP53inp1. Finally, we showed that silencing of TP53inp1 enhances the radiation sensitivity of fibroblast cells. These data suggest functional roles for TP53inp1 in radiation-induced autophagy and survival. Taken together, we suppose that silencing of TP53inp1 leads radiation induced autophagy impairment and induces accumulation of damaged mitochondria in primary human fibroblasts.  相似文献   

4.
Ubiquitin-specific protease 39 (USP39), a member of the deubiquitinating enzyme family, has been reported to participate in cytokinesis and metastasis. Previous studies determined that USP39 functions as an oncogenic factor in various types of cancer. Here, we reported that USP39 is frequently overexpressed in human lung cancer tissues and non-small-cell lung cancer (NSCLC) cell lines. USP39 knockdown inhibited the proliferation and colony formation of A549 and HCC827 cells and decreased tumorigenic potential in nude mice. Specifically, knocking down USP39 resulted in cell cycle arrest at G2/M and subsequent apoptosis through the activation of the p53 pathway, including upregulation of p21, cleaved-cas3, cleaved-cas9 and downregulation of CDC2 and CycinB1. Moreover, USP39 knockdown significantly inhibited migration and invasion of A549 and HCC827 cells, also via activation of the p53 pathway, and downregulation of MMP2 and MMP9. Importantly, we verified these results in metastasis models in vivo. Collectively, these results not only establish that USP39 functions as an oncogene in lung cancer, but reveal that USP39 has an essential role in regulating cell proliferation and metastasis via activation of the p53 pathway.  相似文献   

5.
Transmembrane 4 superfamily member 1 (TM4SF1) is a member of tetraspanin family, which mediates signal transduction events regulating cell development, activation, growth and motility. Our previous studies showed that TM4SF1 is highly expressed in liver cancer. HepG2 cells were transfected with TM4SFl siRNA and TM4SF1-expressing plasmids and their biological functions were analyzed in vitro and in vivo. HepG2 cells overexpressing TM4SF1 showed reduced apoptosis and increased cell migration in vitro and enhanced tumor growth and metastasis in vivo, whereas siRNA-mediated silencing of TM4SF1 had the opposite effect. TM4SF1 exerts its effect by regulating a few apoptosis- and migration-related genes including caspase-3, caspase-9, MMP-2, MMP-9 and VEGF. These results indicate that TM4SF1 is associated with liver tumor growth and progression, suggesting that TM4SF1 may be a potential target for treatment of liver cancer in future.  相似文献   

6.
7.
Hypoxia in non-small cell lung cancer (NSCLC) affects cancer progression, metastasis and metabolism. We previously showed that FAM13A was induced by hypoxia in NSCLC but the biological function of this gene has not been fully elucidated. This study aimed to investigate the role of hypoxia-induced FAM13A in NSCLC progression and metastasis. Lentiviral shRNAs were used for FAM13A gene silencing in NSCLC cell lines (A549, CORL-105). MTS assay, cell tracking VPD540 dye, wound healing assay, invasion assay, BrdU assay and APC Annexin V staining assays were performed to examine cell proliferation ability, migration, invasion and apoptosis rate in NSCLC cells. The results of VPD540 dye and MTS assays showed a significant reduction in cell proliferation after FAM13A knockdown in A549 cells cultured under normal and hypoxia (1% O2) conditions (p < 0.05), while the effect of FAM13A downregulation on CORL-105 cells was observed after 96 h exposition to hypoxia. Moreover, FAM13A inhibition induced S phase cell cycle arrest in A549 cells under hypoxia conditions. Silencing of FAM13A significantly suppressed migration of A549 and CORL-105 cells in both oxygen conditions, especially after 72 and 96 h (p < 0.001 in normoxia, p < 0.01 after hypoxia). It was showed that FAM13A reduction resulted in disruption of the F-actin cytoskeleton altering A549 cell migration. Cell invasion rates were significantly decreased in A549 FAM13A depleted cells compared to controls (p < 0.05), mostly under hypoxia. FAM13A silencing had no effect on apoptosis induction in NSCLC cells. In the present study, we found that FAM13A silencing has a negative effect on proliferation, migration and invasion activity in NSCLC cells in normal and hypoxic conditions. Our data demonstrated that FAM13A depleted post-hypoxic cells have a decreased cell proliferation ability and metastatic potential, which indicates FAM13A as a potential therapeutic target in lung cancer.  相似文献   

8.
The deubiquitinating enzyme USP14 has been identified and biochemically studied, but its role in lung cancer remains to be elucidated. The aim of this study was to evaluate the prognostic significance of USP14 in patients with lung adenocarcinoma and to define its role in lung cancer cell proliferation. USP14 mRNA levels in different non-small cell lung cancer (NSCLC) cell lines were detected by real-time qPCR. USP14 protein levels in surgically resected samples from NSCLC patients, and in NSCLC cell lines, were detected by immunohistochemistry or Western blot. The correlation of USP14 expression with clinical characteristics and prognosis was determined by survival analysis. After silencing USP14, cell proliferation was assessed by MTT assay and the cell cycle was measured by FACS assay. It was found that USP14 expression was upregulated in NSCLC cells, especially in adenocarcinoma cells. Over-expression of USP14 was associated with shorter overall survival of patients. Downregulation of USP14 expression arrested the cell cycle, which may be related to β-catenin degradation. Over-expression of USP14 was associated with poor prognosis in NSCLC patients and promoted tumor cell proliferation, which suggests that USP14 is a tumor-promoting factor and a promising therapeutic target for NSCLC.  相似文献   

9.
Cell division cycle 25A (Cdc25A) is a dual-specificity phosphatase that is overexpressed in several cancer cells and promotes tumorigenesis. In normal cells, Cdc25A expression is regulated tightly, but the changes in expression patterns in cancer cells that lead to tumorigenesis are unknown. In this study, we showed that ubiquitin-specific protease 29 (USP29) stabilized Cdc25A protein expression in cancer cell lines by protecting it from ubiquitin-mediated proteasomal degradation. The presence of USP29 effectively blocked polyubiquitination of Cdc25A and extended its half-life. CRISPR-Cas9-mediated knockdown of USP29 in HeLa cells resulted in cell cycle arrest at the G0/G1 phase. We also showed that USP29 knockdown hampered Cdc25A-mediated cell proliferation, migration, and invasion of cancer cells in vitro. Moreover, NSG nude mice transplanted with USP29-depleted cells significantly reduced the size of the tumors, whereas the reconstitution of Cdc25A in USP29-depleted cells significantly increased the tumor size. Altogether, our results implied that USP29 promoted cell cycle progression and oncogenic transformation by regulating protein turnover of Cdc25A.  相似文献   

10.
Recently, a member of the voltage-dependent potassium channel (Kv) family, the Ether à go-go 1 (Eag1) channel was found to be necessary for cell proliferation, cycle progression and tumorigenesis. However, the therapeutic potential of the Eag1 channel in osteosarcoma remains elusive. In the present study, a recombinant adenovirus harboring shRNA against Eag1 was constructed to silence Eag1 expression in human osteosarcoma MG-63 cells. We observed that Eag1-shRNA inhibited the proliferation and colony formation of MG-63 cells due to the induction of G1 phase arrest. Moreover, in vivo experiments showed that Eag1-shRNA inhibited osteosarcoma growth in a xenograft nude mice model. In addition, selective inhibition of Eag1 significantly decreased the expression levels of cyclin D1 and E. Taken together, our data suggest that the Eag1 channel plays a crucial role in regulating the proliferation and cell cycle of osteosarcoma cells, and represents a new and effective therapeutic target for osteosarcoma.  相似文献   

11.
The activation of oncogenes and the loss of tumor suppressor genes are believed to play critical roles in the pathogenesis of human hepatocellular carcinoma (HCC). Metaherin (MTDH), also called astrocyte elevated gene-1 (AEG-1), is frequently amplified in a variety of cancers, but the roles of MTDH with regard to growth and apoptosis in HCC have not yet been studied. In the present study, we first analyzed the expression of MTDH in HCC samples. We found that MTDH protein levels are higher in most HCC cancerous tissues compared with their matched adjacent non-tumor tissues. Additionally, the MTDH mRNA was also higher in HCC tissues compared to their matched adjacent non-tumor tissues. Knockdown of the endogenous MTDH using small interfering RNA further showed that deficiency of MTDH suppressed cell growth and caused apoptosis in HCC cells. Knockdown MTDH promoted PTEN and p53 expression in HCC cells and inhibited AKT phosphorylation. Knockdown MTDH also inhibited tumor growth in vivo. All these results indicated that MTDH protein levels in most HCC tissues are higher than non-tumor tissues, and knockdown of MTDH inhibited growth and induced apoptosis in HCC cells through the activation of PTEN. Therefore, MTDH might be an effective targeted therapy gene for HCC.  相似文献   

12.
Intracellular superoxide dismutases (SODs) maintain tissue homeostasis via superoxide metabolism. We previously reported that intracellular reactive oxygen species (ROS), including superoxide accumulation caused by cytoplasmic SOD (SOD1) or mitochondrial SOD (SOD2) insufficiency, induced p53 activation in cells. SOD1 loss also induced several age-related pathological changes associated with increased oxidative molecules in mice. To evaluate the contribution of p53 activation for SOD1 knockout (KO) (Sod1/) mice, we generated SOD1 and p53 KO (double-knockout (DKO)) mice. DKO fibroblasts showed increased cell viability with decreased apoptosis compared with Sod1/ fibroblasts. In vivo experiments revealed that p53 insufficiency was not a great contributor to aging-like tissue changes but accelerated tumorigenesis in Sod1/ mice. Furthermore, p53 loss failed to improve dilated cardiomyopathy or the survival in heart-specific SOD2 conditional KO mice. These data indicated that p53 regulated ROS-mediated apoptotic cell death and tumorigenesis but not ROS-mediated tissue degeneration in SOD-deficient models.  相似文献   

13.
Our previous studies revealed that graphene had anticancer properties in experiments in vitro with glioblastoma multiforme (GBM) cells and in tumors cultured in vivo. We hypothesized that the addition of arginine or proline to graphene solutions might counteract graphene agglomeration and increase the activity of graphene. Experiments were performed in vitro with GBM U87 cells and in vivo with GBM tumors cultured on chicken embryo chorioallantoic membranes. The measurements included cell morphology, mortality, viability, tumor morphology, histology, and gene expression. The cells and tumors were treated with reduced graphene oxide (rGO) and rGO functionalized with arginine (rGO + Arg) or proline (rGO + Pro). The results confirmed the anticancer effect of graphene on GBM cells and tumor tissue. After functionalization with amino acids, nanoparticles were distributed more specifically, and the flakes of graphene were less agglomerated. The molecule of rGO + Arg did not increase the expression of TP53 in comparison to rGO, but did not increase the expression of MDM2 or the MDM2/TP53 ratio in the tumor, suggesting that arginine may block MDM2 expression. The expression of NQO1, known to be a strong protector of p53 protein in tumor tissue, was greatly increased. The results indicate that the complex of rGO + Arg has potential in GBM therapy.  相似文献   

14.
Diallyl disulfide (DADS) is a natural organosulfur compound isolated from garlic. DADS has various biological properties, including anticancer, antiangiogenic, and antioxidant effects. However, the anticancer mechanisms of DADS in human esophageal carcinoma have not been elucidated, especially in vivo. In this study, MTT assay showed that DADS significantly reduced cell viability in human esophageal carcinoma ECA109 cells, but was relatively less toxic in normal liver cells. The pro–apoptotic effect of DADS on ECA109 cells was detected by Annexin V-FITC/propidium iodide (PI) staining. Flow cytometry analysis showed that DADS promoted apoptosis in a dose-dependent manner and the apoptosis rate could be decreased by caspase-3 inhibitor Ac-DEVD-CHO. Xenograft study in nude mice showed that DADS treatment inhibited the growth of ECA109 tumor in both 20 and 40 mg/kg DADS groups without obvious side effects. DADS inhibited ECA109 tumor proliferation by down-regulating proliferation cell nuclear antigen (PCNA). DADS induced apoptosis by activating a mitochondria-dependent pathway with the executor of caspase-3, increasing p53 level and Bax/Bcl-2 ratio, and downregulating the RAF/MEK/ERK pathway in ECA109 xenograft tumosr. Based on studies in cell culture and animal models, the findings here indicate that DADS is an effective and safe anti-cancer agent for esophageal carcinoma.  相似文献   

15.
Ruthenium (Ru) complexes are currently the focus of substantial interest because of their potential application as chemotherapeutic agents with broad anticancer activities. This study investigated the in vitro and in vivo anticancer activities and mechanisms of two Ru complexes—2,3,7,8,12,13,17,18-Octaethyl-21H,23H-porphine Ru(II) carbonyl (Ru1) and 5,10,15,20-Tetraphenyl-21H,23H-porphine Ru(II) carbonyl (Ru2)—against human hepatocellular carcinoma (HCC) cells. These Ru complexes effectively inhibited the cellular growth of three human hepatocellular carcinoma (HCC) cells, with IC50 values ranging from 2.7–7.3 μM. In contrast, the complexes exhibited lower toxicity towards L02 human liver normal cells with IC50 values of 20.4 and 24.8 μM, respectively. Moreover, Ru2 significantly inhibited HepG2 cell migration and invasion, and these effects were dose-dependent. The mechanistic studies demonstrated that Ru2 induced HCC cell apoptosis, as evidenced by DNA fragmentation and nuclear condensation, which was predominately triggered via caspase family member activation. Furthermore, HCC cell treatment significantly decreased the expression levels of Nrf2 and its downstream effectors, NAD(P)H: quinone oxidoreductase 1 (NQO1) and heme oxygenase 1 (HO1). Ru2 also exhibited potent in vivo anticancer efficacy in a tumor-bearing nude mouse model, as demonstrated by a time- and dose-dependent inhibition on tumor growth. The results demonstrate the therapeutic potential of Ru complexes against HCC via Nrf2 pathway regulation.  相似文献   

16.
Recent studies suggest that metformin, a widely used antidiabetic agent, may reduce cancer risk and improve prognosis of certain malignancies. However, the mechanisms for the anti-cancer effects of metformin remain uncertain. In this study, we investigated the effects of metformin on human bladder cancer cells and the underlying mechanisms. Metformin significantly inhibited the proliferation and colony formation of 5637 and T24 cells in vitro; specifically, metformin induced an apparent cell cycle arrest in G0/G1 phases, accompanied by a strong decrease of cyclin D1, cyclin-dependent kinase 4 (CDK4), E2F1 and an increase of p21waf-1. Further experiments revealed that metformin activated AMP-activated protein kinase (AMPK) and suppressed mammalian target of rapamycin (mTOR), the central regulator of protein synthesis and cell growth. Moreover, daily treatment of metformin led to a substantial inhibition of tumor growth in a xenograft model with concomitant decrease in the expression of proliferating cell nuclear antigen (PCNA), cyclin D1 and p-mTOR. The in vitro and in vivo results demonstrate that metformin efficiently suppresses the proliferation of bladder cancer cells and suggest that metformin may be a potential therapeutic agent for the treatment of bladder cancer.  相似文献   

17.
Deregulation of voltage-gated potassium channel subunit Kv1.3 has been reported in many tumors. Kv1.3 promotes tumorigenesis by enhancing cell proliferation while suppressing apoptosis. However, the expression and function of Kv1.3 in osteosarcoma are unknown. In the present study, we detected the expression of Kv1.3 in human osteosarcoma cells and tissues by RT-PCR, Western blot and immunohistochemistry. We further examined cell proliferation and apoptosis in osteosarcoma MG-63 cells and xenografts following knockdown of Kv1.3 by short hairpin RNA (shRNA). We found that Kv1.3 was upregulated in human osteosarcoma. Knockdown of Kv1.3 significantly suppressed cell proliferation and increased apoptosis as demonstrated by enhanced cleavage of poly (ADP-ribose) polymerase (PARP) and the activation of Caspase-3/7. Furthermore, adenovirus delivered shRNA targeting Kv1.3 significantly inhibited the growth of MG-63 xenografts. Taken together, our results suggest that Kv1.3 is a novel molecular target for osterosarcoma therapy.  相似文献   

18.
MicroRNAs (miRNAs) have essential roles in carcinogenesis and tumor progression. Here, we investigated the roles and mechanisms of miR-143 in non-small cell lung cancer (NSCLC). miR-143 was significantly decreased in NSCLC tissues and cell lines. Overexpression of miR-143 suppressed NSCLC cell proliferation, induced apoptosis, and inhibited migration and invasion in vitro. Integrated analysis identified LIM domain kinase 1 (Limk1) as a direct and functional target of miR-143. Overexpression of Limk1 attenuated the tumor suppressive effects of miR-143 in NSCLC cells. Moreover, miR-143 was inversely correlated with Limk1 expression in NSCLC tissues. Together, our results highlight the significance of miR-143 and Limk1 in the development and progression of NSCLC.  相似文献   

19.
To facilitate efficient drug delivery to tumor tissue, several nanomaterials have been designed, with combined diagnostic and therapeutic properties. In this work, we carried out fundamental in vitro and in vivo experiments to assess the labeling efficacy of our novel theranostic nanoprobe, consisting of glycogen conjugated with a red fluorescent probe and gadolinium. Microscopy and resazurin viability assays were used to study cell labeling and cell viability in human metastatic melanoma cell lines. Fluorescence lifetime correlation spectroscopy (FLCS) was done to investigate nanoprobe stability. Magnetic resonance imaging (MRI) was performed to study T1 relaxivity in vitro, and contrast enhancement in a subcutaneous in vivo tumor model. Efficient cell labeling was demonstrated, while cell viability, cell migration, and cell growth was not affected. FLCS showed that the nanoprobe did not degrade in blood plasma. MRI demonstrated that down to 750 cells/μL of labeled cells in agar phantoms could be detected. In vivo MRI showed that contrast enhancement in tumors was comparable between Omniscan contrast agent and the nanoprobe. In conclusion, we demonstrate for the first time that a non-toxic glycogen-based nanoprobe may effectively visualize tumor cells and tissue, and, in future experiments, we will investigate its therapeutic potential by conjugating therapeutic compounds to the nanoprobe.  相似文献   

20.
Ether à go-go 1 (Eag1) channel is overexpressed in a variety of cancers but the therapeutic potential of Eag1 in osteosarcoma remains elusive. In this study, we constructed an Ad5-Eag1-shRNA vector and evaluated its efficiency for Eag1 knockdown and its effects on osteosarcoma. Our results showed that Ad5-Eag1-shRNA had high interference efficiency of Eag1 expression and suppressed osteosarcoma growth both in vitro and in vivo. To explore the molecular mechanism underlying tumor growth inhibition induced by Eag1 silencing, the intratumoral microvessel density (MVD) was assessed by CD31 staining and the expression of vascular endothelial growth factor (VEGF) was detected by Western blot analysis. We found that Eag1 silencing led to decreased angiogenesis and VEGF expression in the xenograft model of osteosarcoma. Finally, we detected a time-dependent decrease in VEGF expression and considerably reduced phosphoinositide 3-kinase (PI3K) and protein kinase B (AKT) activation in osteosarcoma cells treated by Eag1 shRNA. Taken together, our results suggest that Eag1 silencing inhibits tumor growth and angiogenesis in osteosarcoma via the down regulation of VEGF/PI3K/AKT signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号